Infrared background suppression algorithm based on guided filtering and fuzzy algorithm
-
摘要: 为了减少背景对红外小目标检测结果的影响,同时降低检测虚警率,采用了基于引导滤波和模糊算法的红外背景抑制算法,利用非下采样轮廓波多尺度、多方向的分解机制,将红外序列图像分解为低通子带和带通子带;再利用引导滤波对低通子带处理,以平滑图像、抑制噪声、增强背景细节;带通子带则采用模糊算法处理,实现目标和残留背景分离;最后将各子带图像通过非下采样轮廓波逆变换,得到了背景抑制图像。结果表明,该方法可以将均方误差降至5~10,有效抑制了背景,突出了目标。该研究为提高复杂背景下的红外小目标检测精度提供了支持。Abstract: In order to reduce the influence of background on detection results of infrared small targets and reduce false alarm rate, infrared background suppression algorithm based on guidance filter and fuzzy algorithm was adopted. The infrared image was decomposed into low-pass band and band-pass band by using multi-scale and multi-direction decomposition mechanism of non sampled contour. The guided filter was used to process low-pass sub-band to smooth images, suppress noise and enhance background details. Band-pass sub-band was processed by fuzzy algorithm to seperate the target from the residual background. Background suppression image was obtained by changing subband images through non subsampled contour inversion. The results show that, the method can reduce mean square error to 5~10, and effectively suppress the background and highlight the target. This study provides the support for improving the detection accuracy of infrared small targets in complex background.
-
-
Table 1 Comparison among the experimental results
Fig. 5m Fig. 5g Fig. 5a MSE PSNR MSE PSNR MSE PSNR top-hat 16.6446 32.8435 13.0185 36.7370 12.3329 36.1820 GIF 15.5397 33.1418 13.0016 36.7426 12.0448 36.2847 RPCA 10.5324 34.8309 6.6929 36.8000 6.2712 37.0826 NSCT 25.6984 30.9572 10.8570 37.1255 5.8153 39.4470 algorithm of this paper 9.9399 35.0824 5.8548 37.3811 5.1063 40.0116 -
[1] RONG Sh H, LIU G, ZHOU H X, et al. Infrared dim and small target background suppression based on the improved shearlet transformand the guide filter[J]. Acta Photonica Sinica, 2015, 44(2):210002(in Chinese). DOI: 10.3788/gzxb
[2] YAN G Sh, BI W Zh. Detection algorithm of small target based on regional singularity filter[J]. Optical Technique, 2007, 33(2):163-152(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXJS200702000.htm
[3] QIN H L, ZHOU H X, LIU Sh Q, et al. Total variation for dim and small target background suppression[J]. Optical Technique, 2009, 35(4):596-598(in Chinese).
[4] QIN H L, YAO K K, ZHOU H X, et al. Nonsubsampled directional filter banks for infrared complex ground background suppression[J]. Semiconductor Optoelectronics, 2011, 32(4):560-563(in Ch-inese). http://d.old.wanfangdata.com.cn/Periodical/bdtgd201104030
[5] LI J, MA J N, LI Sh J, et al. Background suppression for infrared dim small target detection based on spatial-temporal filter[J]. Semiconductor Optoelectronics, 2017, 38(3):396-400(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bdtgd201703019
[6] GE W, JI P Ch, ZHAO T Ch. Infrared and visible light images fusion of fuzzy logic on NSST domain[J]. Laser Technology, 2016, 40(6):892-896(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201606024
[7] WU Y Q, LUO Z J, WU W Y. A method of small target detection in infrared image based on non-subsampled contourlet transform[J]. Journal of Image & Graphics, 2009, 14(3):477-481(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGTB200903018.htm
[8] WU T A, HUANG Sh C, YUAN Zh W, et al. NSCT combined with SVD for infrared dim target complex background suppression[J]. Infrared Technology, 2016, 38(9):758-764(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwjs201609008
[9] FENG Y. Detection of dim and small infrared targets based on the improved singular value decomposition[J]. Laser Technology, 2016, 40(3):335-338(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201603007
[10] da CUNHA A L, ZHOU J, DO M N. The non-subsampled contourlet transform:theory, design and applications[J]. IEEE Transactions on Image Proecessing, 2006, 15(10):3089-3101. DOI: 10.1109/TIP.2006.877507
[11] PENG Zh, ZHAO B J. Novel scheme for infrared image enhancement based on contourlet transform and fuzzy theory[J]. Laser & Infrared, 2011, 41(6):635-640(in Chinese). http://ieeexplore.ieee.org/document/6023751/
[12] HE K, SUN J, TANG X OU. Guided image filtering[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(6):1397-1409. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201207002
[13] LI X H, DONG A G, FENG J H. Regional fusion algorithm of i-mages based on multistage guide filters[J]. Laser Technology, 2016, 40(5):756-761(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201605029.htm
[14] KANG Ch Q, CAO W P, HUA L, et al. Infrared image denoising algorithm via two-stage 3-D filtering[J]. Laser & Infrared, 2013, 43(3):261-264(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgyhw201303008
[15] ZHANG W. An improved method of image fuzzy enhancement[J]. Life Science Instruments, 2006, 4(3):29-31(in Chinese).
[16] LUO Y, YANG H M. An improved fuzzy enhancement algorithm of robot digital landmark based on Otsu adaptive threshold[J]. Optics & Optoelectronic Technology, 2010, 8(1):35-38(in Chinese).
-
期刊类型引用(7)
1. 刘宣呈,陈根余,操坤,曹明月,梅枫. 成形砂轮激光修整的多轮廓图像合成检测方法. 激光技术. 2024(03): 395-404 . 本站查看
2. 何易德,朱斌,姜湖海,刘书信,李黎明,胡绍云. 红外图像多尺度统计和应用先验去模糊模型. 激光技术. 2023(03): 360-365 . 本站查看
3. 何易德,朱斌,司晨,毛锐. 基于红外视景仿真技术的导向滤波算法. 激光技术. 2021(02): 233-239 . 本站查看
4. 朱金辉,张宝华,谷宇,李建军,张明. 基于双邻域对比度的红外小目标检测算法. 激光技术. 2021(06): 794-798 . 本站查看
5. 王宁,周铭,杜庆磊,王冰. 一种红外图像快速目标检测方法. 弹箭与制导学报. 2020(04): 24-28+33 . 百度学术
6. 刘晓玲,牛海春,宋海燕,秦富贞. 复杂环境下弱信号中的红外小目标自动检测. 激光杂志. 2020(10): 82-86 . 百度学术
7. 王宁,周铭,杜庆磊,王冰. 基于Otsu准则的红外图像快速分割算法. 空军预警学院学报. 2019(02): 88-92 . 百度学术
其他类型引用(4)