高级检索

基于双邻域对比度的红外小目标检测算法

朱金辉, 张宝华, 谷宇, 李建军, 张明

朱金辉, 张宝华, 谷宇, 李建军, 张明. 基于双邻域对比度的红外小目标检测算法[J]. 激光技术, 2021, 45(6): 794-798. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.020
引用本文: 朱金辉, 张宝华, 谷宇, 李建军, 张明. 基于双邻域对比度的红外小目标检测算法[J]. 激光技术, 2021, 45(6): 794-798. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.020
ZHU Jinhui, ZHANG Baohua, GU Yu, LI Jianjun, ZHANG Ming. Infrared small target detection algorithm based on double neighborhood contrast measure[J]. LASER TECHNOLOGY, 2021, 45(6): 794-798. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.020
Citation: ZHU Jinhui, ZHANG Baohua, GU Yu, LI Jianjun, ZHANG Ming. Infrared small target detection algorithm based on double neighborhood contrast measure[J]. LASER TECHNOLOGY, 2021, 45(6): 794-798. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.020

基于双邻域对比度的红外小目标检测算法

基金项目: 

国家自然科学基金资助项目 61841204

国家自然科学基金资助项目 61663036

内蒙古自治区2019年研究生科研创新资助项目 S20191187Z

国家自然科学基金资助项目 61962046

内蒙古自治区杰青培育项目 2018JQ02

详细信息
    作者简介:

    朱金辉(1997-),男,硕士研究生,现主要从事图像处理的研究

    通讯作者:

    张宝华, E-mail: zbh_wj2004@imust.cn

  • 中图分类号: TP391

Infrared small target detection algorithm based on double neighborhood contrast measure

  • 摘要: 为了解决密集多目标检测中易造成的漏检问题,提出一种基于双邻域对比度的红外小目标检测算法。首先利用峰值搜索算法筛选出候选目标;再通过单尺度3层双邻域窗口遍历候选目标; 最后利用双邻域对比度模型计算候选目标区域的最小灰度对比度,并用对角梯度因子增强对比度和抑制杂波。结果表明,与5种对比方法相比,该方法的背景抑制因子和对比度增益分别平均提高4.7倍和1.8倍,有效地抑制了杂波,增强了目标。该研究能够准确地检测到相互接近的多个目标,对提高复杂背景下的多目标检测精度是有帮助的。
    Abstract: In order to solve the problem of missed detection easily caused in dense multi-target detection, an infrared small target detection algorithm based on double neighborhood contrast measure was proposed. First, the peak search algorithm was used to screen out the candidate targets; then the candidate targets were traversed through a single-scale three-layer double neighborhood window; finally the dual-neighbor contrast model was used to calculate the minimum gray contrast of the candidate target area, and the contrast and suppresses clutter were enhanced by the diagonal gradient. The results show that compared with the five comparison methods, the background suppression factor and contrast gain of this method are increased by 4.7 times and 1.8 times on average, respectively, which effectively suppresses clutter and enhances the target. This research can accurately detect multiple targets that are close to each other, which is helpful to improve the accuracy of multi-target detection in complex backgrounds.
  • Figure  1.   Expansion effect of multi-scale methods

    a—original image b—expansion effect diagram

    Figure  2.   Three-layer double-neighbor window structure

    Figure  3.   Algorithm flowchart

    Figure  4.   Frame 1, 2, 3, 4, 5 five original image sequences and detection results under different methods

    表  1   BSF, CG and average running time of different algorithms under each image sequence

    methods top-hat VARD LCM MPCM RLCM proposed
    BSF frame 1 3.754 8.718 1.356 5.947 3.562 10.029
    frame 2 2.423 9.154 2.450 11.366 2.869 12.263
    frame 3 1.648 5.634 1.339 2.514 2.939 9.937
    frame 4 9.436 21.198 1.730 7.819 7.820 23.075
    frame 5 3.104 2.438 12.480 1.628 4.388 12.751
    CG frame 1 2.385 2.483 1.914 1.634 2.396 2.484
    frame 2 1.691 1.743 1.507 1.595 1.339 1.758
    frame 3 2.473 2.325 1.588 0.479 2.448 2.681
    frame 4 0.998 2.131 1.409 1.695 1.515 2.233
    frame 5 0.996 1.426 0.954 1.426 0.631 1.431
    time frame 1 0.570 0.067 0.116 0.103 1.049 0.336
    frame 2 0.380 0.066 0.135 0.118 2.650 0.815
    frame 3 0.430 0.069 0.150 0.126 3.553 1.023
    frame 4 0.470 0.082 0.167 0.153 4.553 1.200
    frame 5 0.732 0.102 0.131 0.076 3.358 0.873
    下载: 导出CSV
  • [1]

    CHEN Q X, WU W Ch, ASKAR H. Detection algorithm based on multi-scale spotted target modeling[J]. Laser Technology, 2020, 44(4): 520-524 (in Chinese).

    [2]

    GUO P Y, ZHANG B H. Infrared background suppression algorithm based on guided filtering and fuzzy algorithm[J]. Laser Technology, 2018, 42(6): 854-858(in Chinese).

    [3]

    WU Q, LIU H K, LIANG Sh N. Aerial infrared small target fast detection algorithm based on HVS[J]. Computer Engineering, 2019, 45(5): 210-215(in Chinese).

    [4]

    HAN J H, LIU S B, QIN G, et al. A local contrast method combined with adaptive background estimation for infrared small target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(9): 1442-1446. DOI: 10.1109/LGRS.2019.2898893

    [5]

    PAN Sh D, ZHANG S, ZHAO M, et al. Infrared small target detection based on double-layer local contrast measure[J]. Acta Photonica Sinica, 2020, 49(1): 0110003(in Chinese). DOI: 10.3788/gzxb20204901.0110003

    [6]

    CHEN C P, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(1): 574-581. http://oldmed.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_c47f70ed79e1ad3d7ea2ad225bebeaab

    [7]

    HAN J H, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure[J]. IEEE Geoscience & Remote Sensing Letters, 2018, 15(4): 612-616. http://ieeexplore.ieee.org/iel7/8859/4357975/08289318.pdf

    [8]

    HAN J H, MA Y, ZHOU B, et al. A robust infrared small target detection algorithm based on human visual system[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2168-2172. DOI: 10.1109/LGRS.2014.2323236

    [9]

    NASIRI M, CHEHRESA S. Infrared small target enhancement based on variance difference[J]. Infrared Physics & Technology, 2017, 82: 107-119. http://smartsearch.nstl.gov.cn/paper_detail.html?id=a9acaec7c93a9824a0ab20df8d840f8b

    [10]

    WU L, MA Y, FAN F, et al. A double-neighborhood gradient method for infrared small target detection[J/OL]. (2020-06-29)[ 2020-11-18]. https://ieeexplore.ieee.org/document/9127878.

    [11]

    DU P, HAMDULLA A. Infrared small target detection using homogeneity-weighted local contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(3): 514-518. http://ieeexplore.ieee.org/document/8754801

    [12]

    GUAN X W, PENG Z M, HUANG S Q, et al. Gaussian scale-space enhanced local contrast measure for small infrared target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(2): 327-331. http://ieeexplore.ieee.org/document/8732385

    [13]

    ZHANG X Y, DING Q H, LUO H B, et al. Infrared dim target detection algorithm based on improved LCM[J]. Infrared and Laser Engineering, 2017, 46(7): 262-268(in Chinese). http://www.researchgate.net/publication/320008143_Infrared_dim_target_detection_algorithm_based_on_improved_LCM

    [14]

    QIN Y, LI B. Effective infrared small target detection utilizing a novel local contrast method[J]. IEEE Geoence and Remote Sensing Letters, 2016, 13(12): 1890-1894. DOI: 10.1109/LGRS.2016.2616416

    [15]

    SHI Y F, WEI Y T, YAO H, et al. High-boost-based multiscale local contrast measure for infrared small target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 15(1): 33-37. http://www.onacademic.com/detail/journal_1000040188292710_ce66.html

    [16]

    HUANG S Q, PENG Z M, WANG Z R, et al. Infrared small target detection by density peaks searching and maximum-gray region growing[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1919-1923. DOI: 10.1109/LGRS.2019.2912989

    [17]

    ZHANG K, YANG K, LI S Y, et al. A difference-based local contrast method for infrared small target detection under complex background[J]. IEEE Access, 2019, 7: 105503-105513. DOI: 10.1109/ACCESS.2019.2932729

    [18]

    ZENG M, LI J X, PENG Z. The design of top-hat morphological filter and application to infrared target detection[J]. Infrared Physics & Technology, 2006, 48(1): 67-76. http://www.onacademic.com/detail/journal_1000034075155210_353b.html

    [19]

    WEI Y T, YOU X G, LI H. Multiscale patch-based contrast mea-sure for small infrared target detection[J]. Pattern Recognition, 2016, 58: 216-226. DOI: 10.1016/j.patcog.2016.04.002

图(4)  /  表(1)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-17
  • 修回日期:  2020-12-05
  • 发布日期:  2021-11-24

目录

    /

    返回文章
    返回