高级检索

光载微波信号抗大气干扰的研究

刘娜, 杨苏辉, 程丽君, 赵长明, 李静, 赵一鸣

刘娜, 杨苏辉, 程丽君, 赵长明, 李静, 赵一鸣. 光载微波信号抗大气干扰的研究[J]. 激光技术, 2018, 42(5): 611-616. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.006
引用本文: 刘娜, 杨苏辉, 程丽君, 赵长明, 李静, 赵一鸣. 光载微波信号抗大气干扰的研究[J]. 激光技术, 2018, 42(5): 611-616. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.006
LIU Na, YANG Suhui, CHENG Lijun, ZHAO Changming, LI Jing, ZHAO Yiming. Study on anti-atmospheric turbulence interference of light borne microwave signal[J]. LASER TECHNOLOGY, 2018, 42(5): 611-616. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.006
Citation: LIU Na, YANG Suhui, CHENG Lijun, ZHAO Changming, LI Jing, ZHAO Yiming. Study on anti-atmospheric turbulence interference of light borne microwave signal[J]. LASER TECHNOLOGY, 2018, 42(5): 611-616. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.006

光载微波信号抗大气干扰的研究

基金项目: 

国家自然科学基金资助项目 61275053

中国科技部国家国际科技合作专项资助项目 2013DFA20600

详细信息
    作者简介:

    刘娜(1991-), 女, 硕士研究生, 现主要从事光载微波雷达信号抗大气干扰特性的研究

    通讯作者:

    杨苏辉, E-mail:suhuiyang@bit.edu.cn

  • 中图分类号: O436

Study on anti-atmospheric turbulence interference of light borne microwave signal

  • 摘要: 为了研究射频强度调制激光信号光源的参量,特别是调制深度对调制波的抗干扰能力产生的影响,采用干涉法对射频强度调制激光信号在通过大气湍流干扰后其相位的变化进行了理论分析和实验验证。搭建了Mach-Zehnder干涉仪,参加干涉的两束光分别为未经调制的单频光和调制后的双频光。以干涉条纹对比度作为信号相位起伏的衡量标准,比较不同大气湍流干扰条件下,干涉条纹的对比度随调制深度的变化。大气湍流由空间光调制器模拟产生,分别在26.32%,42.04%,67.59%和85.04% 4种调制深度下,比较有无大气湍流时干涉条纹的对比度的变化。结果表明,调制信号的调制度越深,其抗大气湍流干扰的能力越强。该结论对双频激光雷达光源的选择具有一定的参考意义。
    Abstract: In order to study effect of parameters of radio frequency(RF) intensity modulation laser signal sources, especially modulation index, on anti-atmospheric turbulence interference, phase change of the RF intensity modulation laser signal passing through atmospheric turbulence was analyzed theoretically and verified experimentally. A Mach-Zehnder interferometer was built, and two interference beams were single frequency light without modulation and dual frequency light with modulation respectively. The contrast of interference fringes was taken as the criterion of signal phase fluctuation. The contrast of interference fringes with the change of modulation depth were compared under different atmospheric turbulence conditions.The atmospheric turbulence was generated by the simulation of spatial light modulator. The contrast of interference fringes with and without atmospheric turbulence was compared under four modulation depths of 26.32%, 42.04%, 67.59% and 85.04%, respectively. The results show that, the deeper the modulation level of modulation signal is, the stronger its ability to resist atmospheric turbulence is. The conclusion has some reference significance for the selection of dual frequency lidar light sources.
  • Figure  1.   System structure of anti-atmospheric interference experiment with dual frequency laser

    Figure  2.   Phase screen of the simulated atmospheric turbulence

    Figure  3.   Interference fringes under strong atmospheric turbulence with diffe-rent modulation depths

    Figure  4.   Relationship between dual-frequency laser signal modulation index and interference fringe contrast

    Figure  5.   Oscilloscope waveform when measuring modulation index

    Figure  6.   Interference image with modulation index of 85% and without atmospheric turbulence

    a—of the single frequency optical signal at the mirror b—of the dual-frequency signal at the mirror c—of the two beams d—after subtracting the noises

    Figure  7.   Light intensity distribution curve of interference image

    Figure  8.   Interference image with modulation index of 26.32%

    a—without atmospheric turbulence b—with atmosphere

    Figure  9.   Interference image with modulation index of 42.04%

    a—without atmospheric turbulence b—with atmosphere

    Figure  10.   Interference image with modulation index of 67.59%

    a—without atmospheric turbulence b—with atmosphere

    Figure  11.   Interference image with modulation index of 85.04%

    a—without atmospheric turbulence b—with atmosphere

    Figure  12.   Relationship between modulation depth and interference fringe contrast in experiment and theory under strong atmospheric turbulence

    Table  1   Interference fringe contrasts at different modulation depths and their changes

    modulation index M interference fringe contrast without atmospheric turbulence V1 interference fringe contrast with atmospheric turbulence V2 change of interference fringe contrastΔ=V1-V2
    26.32% 63.72% 56.41% 7.31%
    42.04% 68.06% 60.96% 7.10%
    67.59% 71.87% 67.78% 4.09%
    85.04% 72.47% 71.65% 0.82%
    下载: 导出CSV
  • [1]

    COCHENOUR B, MULLEN L, MUTH J. A modulated pulse laser for underwater detection, ranging, imaging, and communications[J]. Proceedings of the SPIE, 2012, 8372:83720S. DOI: 10.1117/12.918711

    [2]

    MULLEN L J, VIEIRA A J C, HEREZFELD P R, et al. Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection[J]. IEEE Transactions on Microwave Theory & Techniques, 1995, 43(9):2370-2377. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=414591

    [3]

    ILLIG D W, LEE R W, MULLEN L J. FMCW optical ranging technique in turbid waters[J].Proceedings of the SPIE, 2015, 9459:94590B. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db99e9853fadba15b92117b611e33cf3

    [4]

    YI F, OU F, LIU B Y, et al. Electro-optic modulator with exceptional power-size performance enabled by transparent conducting electrodes[J]. Optics Express, 2010, 18(7):6779-6796. DOI: 10.1364/OE.18.006779

    [5]

    AHMAD H, AMIRI I S, SOLTANIAN M R K, et al. Dual-wavelength erbium-doped fiber laser to generate terahertz radiation using photonic crystal fiber[J]. Journal of Lightwave Technology, 2015, 33(24):5038-5046. DOI: 10.1109/JLT.2015.2495255

    [6]

    ROLLAND A, FREIN V, VALLET M, et al. 40GHz photonic synthesizer using a dual-polarization microlaser[J]. IEEE Photonics Technology Letters, 2010, 22(23):1738-1740. DOI: 10.1109/LPT.2010.2084077

    [7]

    JUAN Y S, LIN F Y. Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser[J]. IEEE Photonics Journal, 2011, 3(4):644-650. DOI: 10.1109/JPHOT.2011.2158413

    [8]

    HAMEL C, BONDU F, LOAS G, et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes[J]. Optics Express, 2014, 22(15):17673-17678. DOI: 10.1364/OE.22.017673

    [9]

    GILLES H, THÉVENIN J, BRUNEL M, et al. Beat-note locking in dual-polarization lasers submitted to frequency-shifted, optical feedback[J]. Journal of the Optical Society of America, 2011, B28(5):1104-1110. http://www.opticsinfobase.org/vjbo/abstract.cfm?uri=josab-28-5-1104

    [10]

    KANG Y, YANG S, BRUNEL M, et al. Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal[J]. Applied Optics, 2017, 56(11):2968-2972. DOI: 10.1364/AO.56.002968

    [11]

    ZHENG Zh, ZHAO Ch M, ZHANG H Y, et al. Phase noise reduction by using dual-frequency laser in coherent detection[J]. Optics & Laser Technology, 2016, 80:169-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47ca6e32f29096b1046b17cbd8e90493

    [12]

    XIANG J S. High-frequency error compensation method for the fast fourier transform-based turbulent phase screen[J]. Acta Optica Sinica, 2014, 34(10):1001003(in Chinese). DOI: 10.3788/AOS

    [13]

    BEGHI A, MASIERO A, CENEDESE A. Multiscale stochastic approach for phase screens synthesis[J]. Applied Optics, 2011, 50(21):4124-33. DOI: 10.1364/AO.50.004124

    [14]

    FENG F, LI Ch W. Simulation of atmospheric turbulence phase screen based on wavelet analysis[J]. Acta Optica Sinica, 2017, 37(1):0101004(in Chinese). DOI: 10.3788/AOS

    [15]

    NIU H H, HAN Y P. Performance analysis of Bessel-Gaussian vortex beam's propagation in atmospheric turbulence[J]. Laser Technology, 2017, 41(3):451-455(in Chinese). http://www.jgjs.net.cn/EN/Y2017/V41/I3/451

  • 期刊类型引用(14)

    1. 张倩,张坤,朱美强,李海港,王军. 运动模糊情况下的结构光光条中心快速提取. 激光与光电子学进展. 2023(01): 168-176 . 百度学术
    2. 万泽洪,邓鸿洋,雷宇,陶国裔,胡红坡,周圣军. 4H-SiC压力敏感膜片的低损伤飞秒激光加工. 光子学报. 2023(01): 74-86 . 百度学术
    3. 冯宗鑫,王娟,李新东,师韩冰. 基于能量自适应的激光发射机设计研究. 应用激光. 2023(09): 156-164 . 百度学术
    4. 宗圣康,程建鹏,张西良. 基于光斑位置的起重机轨道高度差自动检测方法. 电子科技. 2022(01): 21-28 . 百度学术
    5. 陈海涛,李婷,高曾辉. 非相干叠加光束携带C点偶极子的演化特性. 激光技术. 2022(05): 691-696 . 本站查看
    6. 思黛蓉,王明军,刘永勤,眭晓林. 粗糙球体和锥体目标激光散射非相干分量比. 激光技术. 2021(01): 37-43 . 本站查看
    7. 陈玉平. 白光谱域OCT的光源性能探讨. 中阿科技论坛(中英文). 2021(05): 108-111 . 百度学术
    8. 叶俏珏,王先菊,戴占海. 布儒斯特角入射的高斯光束传输特性研究. 激光与光电子学进展. 2021(07): 324-330 . 百度学术
    9. 杜进,张永奇. 小孔拟合法测量高斯光束的束腰半径. 自动化与仪器仪表. 2021(07): 192-194+199 . 百度学术
    10. 章秀华,洪汉玉,徐洋洋,张天序. 复杂光照条件下矿石三维视觉实时筛选方法. 红外与激光工程. 2021(11): 394-404 . 百度学术
    11. 黄凌锋,刘光东,张超,甘宏,罗文婷,李林. 基于灰度权重模型的激光条纹中心提取算法. 激光技术. 2020(02): 190-195 . 本站查看
    12. 查晓民,朱东. 厄米-高斯波束对各向异性圆柱的散射特性研究. 激光技术. 2020(03): 338-342 . 本站查看
    13. 张国宇,魏华. 微纳尺度下激光聚焦的探究. 物理与工程. 2020(02): 98-102 . 百度学术
    14. 胡越,项华中,涂建坤,江斌,郑刚. 基于远场可变孔径的高斯函数拟合测量模场直径. 电子测量技术. 2020(19): 123-127 . 百度学术

    其他类型引用(28)

图(12)  /  表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • PDF下载量:  7
  • 被引次数: 42
出版历程
  • 收稿日期:  2017-11-13
  • 修回日期:  2017-11-26
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回