高级检索

粗糙球体和锥体目标激光散射非相干分量比

思黛蓉, 王明军, 刘永勤, 眭晓林

思黛蓉, 王明军, 刘永勤, 眭晓林. 粗糙球体和锥体目标激光散射非相干分量比[J]. 激光技术, 2021, 45(1): 37-43. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.007
引用本文: 思黛蓉, 王明军, 刘永勤, 眭晓林. 粗糙球体和锥体目标激光散射非相干分量比[J]. 激光技术, 2021, 45(1): 37-43. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.007
SI Dairong, WANG Mingjun, LIU Yongqin, SUI Xiaolin. Incoherent component ratio of laser scattering from rough sphere and cone targets[J]. LASER TECHNOLOGY, 2021, 45(1): 37-43. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.007
Citation: SI Dairong, WANG Mingjun, LIU Yongqin, SUI Xiaolin. Incoherent component ratio of laser scattering from rough sphere and cone targets[J]. LASER TECHNOLOGY, 2021, 45(1): 37-43. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.007

粗糙球体和锥体目标激光散射非相干分量比

基金项目: 

国家自然科学基金资助项目 61771385

西安市高校人才服务企业工程资助项目 GXYD14.26

××重点实验室基金资助项目 614240418××

详细信息
    作者简介:

    思黛蓉(1993-),女,硕士研究生,主要研究方向为粗糙表面和粗糙物体的散射

    通讯作者:

    王明军, E-mail: wmjxd@aliyun.com

  • 中图分类号: O436.2

Incoherent component ratio of laser scattering from rough sphere and cone targets

  • 摘要: 为了研究激光散斑对目标探测的影响,采用物理光学近似方法,进行了平面波激光照射在粗糙球体和圆锥体目标时对散射场统计特性的理论分析,推导了粗糙体目标散射场量的二阶统计矩, 数值计算了粗糙球体和锥体的非相干散射分量比随粗糙度、散射角、半径及目标材料的变化情况。结果表明,散射角的变化对粗糙球体散射非相干分量比有影响,粗糙度变大,目标的非相干分量占总散射分量的比重越大;随着粗糙球体半径变小,球体表面越粗糙;圆锥体目标散射非相干分量比的峰值位置随粗糙度变化而不同,但其峰值均位于镜反射方向上;金属类材料比非金属抛光铝材料的非相干分量比小,且半径变化与非相干分量比成正比。该研究结果可为更复杂目标激光散射特性和激光散斑探测、识别的研究提供一定的参考价值。
    Abstract: In order to study the effect of laser speckle on target detection, the theoretical analysis of the statistical characteristics of the scattering field when the plane wave laser irradiates the rough sphere and cone target was carried out by using the physical optics approximation method, and the second order statistical moment of the scattering field quantity of rough targets was derived. The variation of incoherent scattering component ratio of rough sphere and cone with roughness, scattering angle, radius, and target material is calculated numerically. The results show that the change of scattering angle has an effect on the incoherent component ratio of rough sphere scattering. The larger the roughness, the larger the proportion of incoherent component of target to the total scattering component. As the radius of the rough sphere becomes smaller, the surface of the sphere becomes rougher. The peak position of incoherent component ratio of cone target scattering varies with roughness, but its peaks are all located in the direction of specular reflection. The incoherent component ratio of metallic materials is smaller than that of non-metallic polished aluminum materials, and the radius change is proportional to the incoherent component ratio. The research results provide some reference value for the study of laser scattering characteristics of more complex targets and laser speckle detection and identification.
  • Figure  1.   Schematic diagram of scattering of rough objects[6]

    Figure  2.   Schematic diagram of plane wave incident rough sphere scattering

    Figure  3.   Schematic diagram of cone light scattering

    Figure  4.   Tangential plane approximate calculation of the incoherent scattering intensity of the object[7]

    Figure  5.   Normalized incoherent component ratio of rough sphere scattering as a function of scattering angle

    Figure  6.   Normalized incoherent component ratio of rough sphere scattering varies with correlation length

    Figure  7.   Normalized incoherent component ratio of rough sphere scattering varies with roughness

    Figure  8.   Variation of normalized incoherent component ratio of cone scattering under different roughness

    Figure  9.   Variation of normalized incoherent component ratio of cone scattering at different radii

    Figure  10.   Normalized incoherent component ratio of cones of different materials as a function of scattering angle

    Figure  11.   Normalized incoherent component ratio of cones with different roughness as a function of incident angle

  • [1]

    WANG M J. Research on scatter of pulse beam by target with rough surface and its laser range Doppler imaging[D]. Xi'an: Xidian University, 2008: 83-96(in Chinese).

    [2]

    DANG W J, ZENG X D, CAO Ch Q, et al. Simulation of the rough target's signal in synthetic aperture ladar[J]. Acta Photonica Sinica, 2015, 44(3): 304001(in Chinese). DOI: 10.3788/gzxb20154403.0304001

    [3]

    OGILVY J A. Wave scattering from rough surfaces[J]. Reports on Progress in Physics, 1987, 50(12): 1553-1608. DOI: 10.1088/0034-4885/50/12/001

    [4]

    ISHIMARU A. Wave propagation and scattering in random media[M]. New York, USA: Academic Press, 1978: 116-148.

    [5]

    CHEN H, WU Zh S, BAI L. Research on the coherent scattering of Gaussian beam from arbitrarily shaped convex object with rough surface[J]. Acta Optical Sinica, 2005, 25(1): 115-120(in Chinese).

    [6]

    CHEN H. Scattering of Gaussian beam by object with rough surface and its application on laser one-dimensional range profile[D]. Xi'an: Xidian University, 2004: 35-38(in Chinese).

    [7]

    CHEN H B. Study on light scattering characteristics of random rough cone surface[D]. Chengdu: University of Electronic Science and Technology of China, 2006: 35-44(in Chinese).

    [8]

    WANG M J, WU Zh S, LI Y L, et al. Research progress on the laser range-resolved Doppler imaging radar and its key technologies[J]. Laser & Infrared, 2009, 39(5): 464-467(in Chinese). DOI: 10.3969/j.issn.1001-5078.2009.05.002

    [9]

    COLLIN R E. Scattering of an incident Gaussian beam by a perfectly conducting rough surface[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(1): 70- 74. DOI: 10.1109/8.272303

    [10]

    WHITMAN G M, WANG Q I, SPECTOR P, et al. Gaussian beam scattering from a deterministic rough metal surface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1868-1876. DOI: 10.1109/TAP.2016.2537383

    [11]

    ISHIMARU A, AILES-SENGERS L, PHU P, et al. Pulse broadening and two-frequency mutual coherence function of the scattered wave from rough surfaces[J]. Waves in Random Media, 1994, 4(2): 139-148. DOI: 10.1088/0959-7174/4/2/004

    [12]

    SALAMI M, HAJIAN A, FAZELI S M, et al. How shadows shape our impression of rough surfaces[J]. Journal of Applied Physics, 2014, 116(24): 243502. DOI: 10.1063/1.4904409

    [13]

    WU Y L, WU Zh S, ZHANG G. Study of anisotropic speckle pa-tterns by rough cylindrical surfaces[J]. Journal of Applied Optics, 2011, 32(1): 35-39(in Chinese).

    [14]

    ZHANG G, WU Zh S. Two-frequency mutual coherence function of scattering from arbitrarily shaped rough objects[J]. Optics Express, 2011, 19(8): 7007-7019. DOI: 10.1364/OE.19.007007

    [15]

    ZHANG G. Statistical properties of laser speckle from rough objects and analysis on micro-motion characteristic[D]. Xi'an: Xidian University, 2013: 28-27(in Chinese).

    [16]

    YANG Zh Q, WU Zh S, ZHANG G, et al. Recognition technology for obtaining micro-motion characteristics of rotating rough targets[J]. Acta Physica Sinica, 2014, 63(21): 210301(in Chinese). DOI: 10.7498/aps.63.210301

    [17]

    LIU J B. Light scattering of cone-shaped space objects by using small perturbation approximate[J]. Acta Photonica Sinica, 2009, 38(10): 2665-2668(in Chinese).

    [18]

    WANG M J, KE X Zh, LI Y L, et al. Statistical moment and incoherent component ratio of laser beam scattering from targets with arbitrary shapes[J]. Acta Optical Sinica, 2016, 36(7): 0729001 (in Chinese). DOI: 10.3788/AOS201636.0729001

    [19]

    YAN K D, FU Y Sh, YU X N, et al. Numerical study on gaussian and exponential light scattering from randomly rough surfaces[J]. Computer & Digital Engineering, 2018, 46(4): 644-648(in Chin-ese).

    [20]

    YE D H. Analysis and application of gauss beam characteristics[J]. Laser Technology, 2019, 43(1): 142-146 (in Chinese).

    [21]

    ZHA X M, ZHU D. Scattering characteristics of Hermite-Gaussian beam on anisotropic cylinder[J]. Laser Technology, 2020, 44(3): 338(in Chinese).

  • 期刊类型引用(1)

    1. 王俊璞,蔡萍. 相关测速虚拟仿真实验设计. 实验室研究与探索. 2023(02): 242-245 . 百度学术

    其他类型引用(2)

图(11)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 3
出版历程
  • 收稿日期:  2020-02-13
  • 修回日期:  2020-04-22
  • 发布日期:  2021-01-24

目录

    /

    返回文章
    返回