高级检索

激光-电弧复合焊接及应用于车身制造的进展

宋新华, 金湘中, 陈胜迁, 袁江, 张明军

宋新华, 金湘中, 陈胜迁, 袁江, 张明军. 激光-电弧复合焊接及应用于车身制造的进展[J]. 激光技术, 2015, 39(2): 259-265. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.024
引用本文: 宋新华, 金湘中, 陈胜迁, 袁江, 张明军. 激光-电弧复合焊接及应用于车身制造的进展[J]. 激光技术, 2015, 39(2): 259-265. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.024
SONG Xinhua, JIN Xiangzhong, CHEN Shengqian, YUAN Jiang, ZHANG Mingjun. Progress of laser-arc hybrid welding and its applications in automotive body manufacture[J]. LASER TECHNOLOGY, 2015, 39(2): 259-265. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.024
Citation: SONG Xinhua, JIN Xiangzhong, CHEN Shengqian, YUAN Jiang, ZHANG Mingjun. Progress of laser-arc hybrid welding and its applications in automotive body manufacture[J]. LASER TECHNOLOGY, 2015, 39(2): 259-265. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.024

激光-电弧复合焊接及应用于车身制造的进展

基金项目: 

国家自然科学基金资助项目(50875079);湖南省自然科学基金资助项目(09JJ3088)

详细信息
    作者简介:

    宋新华(1980-),男,硕士,研究方向为激光焊接技术。

    通讯作者:

    金湘中。E-mail:jin9000xz@hotmail.com

  • 中图分类号: TG456.7

Progress of laser-arc hybrid welding and its applications in automotive body manufacture

  • 摘要: 激光-电弧复合焊接技术充分集成了激光焊接和电弧焊接两种工艺的优点,是一种新型优质的焊接技术,具有良好的工业应用前景。介绍了激光-电弧复合焊接的特点和激光与电弧的相互作用机制;总结了常见激光-电弧复合焊接技术的研究进展;最后对激光-电弧复合焊接技术在汽车车身制造中的应用情况进行了概述。
    Abstract: Laser-arc hybrid welding, integrating the advantages of laser welding process and arc welding, is a new, high-quality welding technology which can be widely used in industry. Firstly, the characteristics of laser-arc hybrid welding, and laser-arc interaction were introduced. Secondly, the research progress of the general laser-arc hybrid welding technologies was reviewed. Finally, the applications of laser-arc hybrid welding technologies in automotive body manufacture were described.
  • [1]

    STEEN W M, EBOO M. Arc augmented laser welding [J]. Metal Construction, 1979, 11(7): 332-335.

    [2]

    STEEN W M. Arc augmented laser processing of materials [J]. Journal of Application Physics, 1980, 51(11): 5636-5641.

    [3]

    TUSEK J, SUBAN M. Hybrid welding with arc and laser beam [J]. Science and Technology of Welding and Joining, 1999, 4(5): 308-311.

    [4]

    ONO M, SHINBO Y, YOSHITAKE A, et al. Development of laser-arc hybrid welding [J]. NKK Technology Review, 2002, 86(1): 8-12.

    [5]

    BAGGER C, OLSEN F O. Review of laser hybrid welding [J]. Journal of Laser Applications, 2005, 17(1): 2-14.

    [6]

    HU B, DEN G. Laser induced stabilization of the welding arc [J]. Science and Technology of Welding and Joining, 2005, 10(1): 76-81.

    [7]

    GAO M, ZENG X Y, YAN J. CO2 laser-pulsed MAG hybrid welding of mild steel. Laser Technology, 2006, 30(5): 498-500(in Chinese).

    [8]

    CHEN Y B, LI L Q, WU L. Quantitative measurement of absorption and defocusing of laser beam by electric arc [J]. Transactions of the China Welding Institution, 2003, 24(3): 56-58(in Chinese).

    [9]

    LI F. Application of laser hybrid welding and laser brazing in VW-Phaeton and Audi A8 [J]. Machinist Metal Forming, 2008(14): 31-34(in Chinese).

    [10]

    JEFF D. Practical applications for hybrid laser welding [J]. Welding Journal, 2007, 86(10): 47-51.

    [11]

    YUAN X C, ZHAO H, WANG P P. Research and application of laser arc hybrid welding technology [J]. Welding Technology, 2010, 39(5): 2-7(in Chinese).

    [12]

    CHEN Y B, LEI Z L, LI L Q, et al. Welding characteristics in different laser-TIG hybrid manners [J]. China Welding, 2004, 13(1): 41-45.

    [13]

    PAGE C J, DEVERMANN B J, BLUNDELL N. Plasma augmented laser welding and its applications [J]. Science and Technology of Welding and Joining, 2002, 7(1): 1-10.

    [14]

    JIN X, BERGER P, GRAF T. Multiple reflections and Fresnel absorption in an actual 3-D keyhole during deep penetration laser welding [J]. Journal of Physics, 2006, D39(21): 4703.

    [15]

    CHENG Y, JIN X, LI S, et al. Fresnel absorption and inverse bremsstrahlung absorption in an actual 3-D keyhole during deep penetration CO2 laser welding of aluminum 6016 [J]. Optics & Laser Technology, 2012, 44(5): 1426-1436.

    [16]

    RIBIC B, RAI R, DEBROY T. Numerical simulation of heat transfer and fluid flow in GTA/laser hybrid welding [J]. Science and Technology of Welding & Joining, 2008, 13(8): 683-693.

    [17]

    RAYES M, WALZ C, SEPOLD G. The influence of various hybrid welding parameters on bead geometry [J]. Welding Journal, 2004, 83(5): 147 -153.

    [18]

    SIEMROTH P, SCHEIBE H J. The method of laser-sustained arc ignition [J]. IEEE Transactions on Plasma Science, 1990, 18(6): 911-916.

    [19]

    WEBSTER S. Hyblas: economical and safe laser hybrid welding of structural steel-final report [M]. Brussels, Belgium: Directorate-General for Research Information and Communication Unit European Commission, 2009:2-10.

    [20]

    WEBSTER S, KRISTENSEN J K, PETRING D. Joining of thick section steels using hybrid laser welding [J]. Ironmaking and Steelmaking, 2008, 35(7): 496-504.

    [21]

    WESTIN E M, STELLING K, GUMENYUK A. Single-pass laser-GMA hybrid welding of 13.5mm thick duplex stainless steel [J]. Welding in the World, 2011, 55(1/2): 39-49.

    [22]

    NORMAN P M, KARLSSON J, KAPLAN A F H. Mechanisms forming undercuts during laser hybrid arc welding [J]. Physics Procedia, 2011, 12(1): 201-207.

    [23]

    MORADI M, GHOREISHI M, FROSTEVARG J, et al. An investigation on stability of laser hybrid arc welding [J]. Optics and Lasers in Engineering, 2013, 51(4): 481-487.

    [24]

    LAMAS J, KARLSSON J, NORMAN P, et al. The effect of fit-up geometry on melt flow and weld quality in laser hybrid welding [J]. Journal of Laser Applications, 2013, 25(3): 032010.

    [25]

    DENNEY P E, FALLARA P M, BROWN L E. Hybrid laser weld development for shipbuilding applications [C]// Proceedings of Ship Production Symposium and Expo. Ypsilanti, Michigan, USA: Ship Production Symposium and Expo, 2002: 25-27.

    [27]

    SUGA T, MURAI Y, KOBASHI T, et al. Research on laser-arc hybrid welding of Ht780 steel [J]. Welding in the World, 2012, 56(11/12): 105-118.

    [28]

    WALLACE J. Materials processing:100kW fiber laser, power meter serve industry.Laser Focus World, 2013, 49(12): 13-14.

    [29]

    LEI Z, QIN G L, LIN Sh Y, et al. Fusion-brazing joining for dissimilar metals between 5A02 aluminium alloy and zinc-coated steel based on laser-MIG hybrid welding [J]. Chinese Journal of Mechanical Engineering, 2009, 45(3): 94-98 (in Chinese).

    [30]

    LIN Sh Y. Laser arc welding new technology and application[C]//The Second Civil Aircraft Manufacturing Technology and Equipment Forum. Beijing, China: Chinese Mechanical Engineering Society, 2010: 1-2 (in Chinese).

    [31]

    WANG W, LIN S Y, WANG X Y, et al. Double electric conduction mechanism of Nd:YAG laser-pulse MAG hybrid welding [J]. Chinese Journal of Lasers, 2012, 39(2): 50-59(in Chinese).

    [32]

    GAO M, ZENG X Y, YAN J, et al. Heat sources interaction of laser-arc hybrid welding [J]. Laser Technology, 2007, 31(5): 465-468 (in Chinese).

    [33]

    GAO M. Study on technology, mechanism and quality controlling of CO2 laser-arc hybrid welding [D]. Wuhan: Huazhong University of Science & Technology, 2007: 124-125(in Chinese).

    [34]

    YAN J. Study on Technology, Defects and joint quality by fiber laser- arc hybrid welding high strength aluminum alloys [D]. Wuhan: Huazhong University of Science & Technology, 2011: 25-102(in Chinese).

    [35]

    WANG J. Study on the technology and plasma behaviour during the fiber laser and laser hybrid welding of aluminum alloy [D]. Wuhan: Huazhong University of Science & Technology,2012: 139-141(in Chinese).

    [36]

    KANG L, HUANG R S, LIU L M, et al. Low-power YAG laser-MAG arc hybrid welding of stainless steel [J]. Transactions of the China Welding Institution, 2007, 28(11): 69-72(in Chinese).

    [37]

    LIU L, HUANG R, SONG G, et al. Behavior and spectrum analysis of welding arc in low-power YAG-laser-MAG hybrid-welding process [J].IEEE Transactions on Plasma Science, 2008, 36(4): 1937-1943.

    [38]

    LIU F D, ZHANG H, WANG Y Q, et al. Influence of area energy for welding seam and droplet transfer on hybrid laser-arc welding [J]. Chinese Journal of Mechanical Engineering, 2012, 48(14): 84-90(in Chinese).

    [39]

    LIU F D, ZHANG H, DU S Y, et al. Influence of laser power on arc and droplet behaviors in droplets on CO2 laser-MAG arc hybrid welding [J]. Chinese Journal of Mechanical Engineering, 2013, 49(4): 75-82(in Chinese).

    [40]

    DILTHEY U, WIESSCHEMANN U. Perspectives offered by combining and coupling laser beam and arc welding [J]. Welding International, 2002, 16(9): 711-719.

    [41]

    ARIAS J L, ROMERO P, VANDEWYNCKELE A, et al. Laser-TIG hybrid welding of very thin austenitic stainless steel sheets [C] // Proceedings of the 24th International Conference on Applications of Lasers and Electro-Optics. Orlando, FL, USA: Laser Institute of America, 2005: 104-107.

    [42]

    NAITO Y, MIZUTANI M, KATAYAMA S. Penetration characteristics in YAG laser and TIG arc hybrid welding, and arc and plasma/plume behaviour during welding. Welding phenomena in hybrid welding using YAG laser and TIG arc (First Report) [J]. Welding International, 2006, 20(10): 777-784.

    [43]

    CHEN Y B, CHEN J, LI L Q, et al. Properties of arc and weld in laser-TIG hybrid process [J]. Transactions of the China Welding Institution, 2003, 24(1): 55-56(in Chinese).

    [44]

    TAN C, LI L, CHEN Y, et al. Laser-tungsten inert gas hybrid welding of dissimilar metals AZ31B Mg alloys to Zn coated steel [J]. Materials & Design, 2013, 49: 766-773.

    [45]

    LIU L, CHEN M, LI C. Effect of electric arc on laser keyhole behavior based on direct observation during low power pulsed laser-arc hybrid welding process [J]. Optics and Lasers in Engineering, 2013, 51(10): 1153-1160.

    [46]

    LIU L M, YUAN S T, LI C B. Effect of relative location of laser beam and TIG arc in different hybrid welding modes [J]. Science and Technology of Welding & Joining, 2012, 17(6): 441-446.

    [47]

    XIAO R Sh, WU S K. Progress on laser-arc hybrid welding [J]. Chinese Journal of Lasers, 2008, 35(11): 1680-1685(in Chinese).

    [48]

    ZHANG Y, LI S C, JIN X Z, et al. Research on the key technology of laser welding of galvanized steel [J]. Laser & Optoelectronics Progress, 2010(7): 37-45(in Chinese).

    [49]

    MEI L F, CHEN G Y, JIN X Z, et al. Study on fiber laser overlap-welding of automobile aluminum alloy [J]. Chinese Journal of Lasers, 2010, 37(8): 2091-2097(in Chinese).

    [50]

    YANG S, CARLSON B, KOVACEVIC R. Laser welding of high-strength galvanized steels in a gap-free lap joint configuration under different shielding conditions [J]. Welding Journal, 2011, 90(1): 8-18.

    [51]

    KUJANPÄÄ V. Short overview of laser applications in automotive manufacturing [C] // Pro-Factory Brokerage Meeting. Gothenburg, Sweden: EUREKA, 2008: 10-11.

    [52]

    STAUFER H, RUHRNOSSL M, MIESSBACHER G. Laser hybrid welding and laser brazing: state of the art in technology and practice by examples of Audi A8 and VW-Phaeton [C] // Proceedings of the Third International WLT Conference on Lasers in Manufacturing. Stuttgart, Germany: AT-Fachverlag, 2005: 203-208.

    [53]

    THOMY C, VOLLERTSEN F. Laser-MIG hybrid welding of aluminium to steel-effect of process parameters on joint properties [J]. Welding in the World, 2012, 56(5/6): 124-132.

    [54]

    QIN G L, SU Y H, WANG S J. Microstructures and properties of pulsed MIG arc brazeing-fusion welding joint of Al alloy and galvanized steel [J]. Acta Metallurgica Sinica, 2012, 48(8): 1018-1024.

    [55]

    LEI Z, QIN G L, LIN S Y, et al. Fusion-brazing joining for dissimilar metals between 5A02 aluminium alloy and zinc-coated steel based on laser-MIG hybrid welding [J]. Journal of Mechanical Engineering, 2009, 45(3): 94-98.

  • 期刊类型引用(21)

    1. 严建强,陈永炜,王志勇,楼平,李响,殷志敏,汤超,王利民,郝思远. 7075铝合金中厚板激光扫描焊接气孔抑制机理研究. 应用激光. 2023(01): 1-11 . 百度学术
    2. 王清曌,曾杰,刘庆永,张培磊. 中厚板高强钢激光-电弧复合焊接研究现状. 工程机械. 2023(02): 88-92+9 . 百度学术
    3. 朱玉麒,郭前建,袁伟,王文华,李飞,杨先海. 高强度双质材料挂车轻量化关键技术综述. 山东理工大学学报(自然科学版). 2022(03): 33-37 . 百度学术
    4. 王耀,张洁琦,顾小燕. 基于LLE激光双电弧复合焊接过程稳定性研究. 激光技术. 2022(04): 538-544 . 本站查看
    5. 马魁一,王丽鹏,赵阳,张冰,韩超,祝哮. 影响使用铝合金试块测试斜探头K值的因素. 铝加工. 2022(03): 59-64 . 百度学术
    6. 常嘉玮. 浅谈汽车车身焊接的智能化及自动化. 时代汽车. 2021(08): 137-138 . 百度学术
    7. 符成学,马照伟,雷小伟,刘甲,高奇. 激光-电弧复合焊接技术现状及其在钛合金领域的研究进展. 材料开发与应用. 2021(04): 82-88 . 百度学术
    8. 宋世达,杨子威,钱美霞,王克鸿. 304不锈钢激光-MIG复合焊焊接电流对接头组织性能的影响. 电焊机. 2020(07): 59-63+90+150 . 百度学术
    9. 冯和永,李宏伟,孙虎,高金良. 激光-电弧复合焊接技术在油箱焊接中的应用分析. 新技术新工艺. 2019(02): 15-18 . 百度学术
    10. 李忠,王涛,刘佳,石岩,白陈明,栗红星. 工艺参量对铝合金复合焊接接头耐蚀性的影响. 激光技术. 2019(02): 189-194 . 本站查看
    11. 李忠,刘佳,白陈明,张亚亮,杨玉东. 超声波对铝合金激光-电弧复合焊接影响的研究. 激光技术. 2019(03): 301-306 . 本站查看
    12. 韩丽梅,蔡得涛,张宇鹏,张楠楠. 光丝间距对304不锈钢激光-MIG复合焊接接头影响的研究. 激光与光电子学进展. 2018(06): 285-292 . 百度学术
    13. 辛秀成,黄根哲,张今捷,张宏,王金钢. 高氮钢复合焊接接头微观组织及力学性能. 激光技术. 2018(04): 476-481 . 本站查看
    14. 汝连志,刘凤德,刘双宇,张宏,白頔. 保护气体对接头形貌及熔滴过渡的影响与模拟. 激光技术. 2018(03): 390-394 . 本站查看
    15. 张威,叶兵,祁小勇,王维新,刘巨峰. 6061铝合金激光-MIG复合焊中能量比影响的研究. 激光技术. 2018(04): 500-504 . 本站查看
    16. 杨玉东,刘佳,石岩,张亚亮. 喷嘴形状对铝合金复合焊接头成形质量的影响. 激光技术. 2018(02): 222-228 . 本站查看
    17. 苏绍兴,于艳玲,费旺,林仕君,伍文丞,曹宇,张健,唐霞辉. 高功率光纤激光焊接铝合金焊缝成形特征研究. 激光技术. 2017(03): 322-327 . 本站查看
    18. 金明姬,刘桂达. 汽车车身焊接技术现状及发展. 科技创新与应用. 2016(09): 132 . 百度学术
    19. 何艳敏,谢创亮,许卓明,鲍鸿,叶双莉,周延周. 基于波数扫描干涉的表面轮廓测量. 激光技术. 2016(03): 392-396 . 本站查看
    20. 张玉超. 汽车车身焊接技术现状及发展. 科技经济导刊. 2016(04): 44 . 百度学术
    21. 王力锋,刘凤德,张宏,刘双宇,刘薇娜,刘松林,邵奇深. 氧化铈对高强钢复合焊接焊缝组织与韧性的影响. 机械工程学报. 2016(22): 70-77 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 33
出版历程
  • 收稿日期:  2014-01-15
  • 修回日期:  2014-04-14
  • 发布日期:  2015-03-24

目录

    /

    返回文章
    返回