2007, 31(5): 511-514.
为了有效地控制激光熔覆层质量,采用反向传播(BP)算法建立了激光熔覆层质量(熔覆层宽度、熔覆层深度和稀释率)随激光功率、光斑直径和扫描速度变化的进化神经网络预测模型。针对BP算法存在收敛速度慢、容易陷入局部极小值及全局搜索能力弱等缺陷,采用遗传算法训练BP神经网络,取代了一些传统的学习算法,设计了基于进化神经网络的学习算法。经过理论分析和实验验证,在神经网络的输出端得到期望的线性输出,并在训练样本之外,选取了5组工艺参数检验神经网络模型的可靠性,预测结果与相应的实验结果的最大相对误差为2.14%。结果表明,运用该模型可以方便、准确地选择激光工艺参数,提高激光熔覆层的加工质量。