为了解决基于机载激光雷达(LiDAR)点云提取道路时多重特征阈值设定难、普适性低的问题, 采用了随机森林分类模型提取道路点云进而获得道路中心线的方法。首先使用渐进加密三角网滤波获取地面点云, 根据山区道路特性, 计算地面点云各点在邻域范围的坡度、粗糙度、高差方差、点密度及反射强度, 组成点的分类特征; 随后手动采集正负样本训练点云随机森林分类模型, 将地面点云通过模型分类得到初始道路点云; 再通过基于密度的噪声应用空间聚类算法去除噪声点精化道路点云; 最后矢量化道路点云获取道路中心线。结果表明, 以Entiat River地区山区LiDAR点云数据进行实验验证, 道路点云提取的正确率达到95.29%, 完整率达到92.96%, 提取质量达到88.88%。该方法能解决多重阈值难以确定的问题, 能较高精度地提取到山区道路点云, 进而获取有效道路中心线, 对山区道路信息的研究有一定的参考价值。