Advanced Search
FAN Fan, YANG Ke-cheng, ZHANG Bo, XU De-sheng. Numerical calculation of mode-fields of the spherical plano-convex unstable resonator with Gaussian reflectivity mirror by means of the finite element method[J]. LASER TECHNOLOGY, 2007, 31(2): 192-195.
Citation: FAN Fan, YANG Ke-cheng, ZHANG Bo, XU De-sheng. Numerical calculation of mode-fields of the spherical plano-convex unstable resonator with Gaussian reflectivity mirror by means of the finite element method[J]. LASER TECHNOLOGY, 2007, 31(2): 192-195.

Numerical calculation of mode-fields of the spherical plano-convex unstable resonator with Gaussian reflectivity mirror by means of the finite element method

More Information
  • Received Date: January 24, 2006
  • Revised Date: March 23, 2006
  • Published Date: April 24, 2007
  • In order to study the mode and the phase characteristic of laser in an unstable resonator with Gaussian reflectivity mirrors,a finite element method is presented to numerically calculate mode-fields of the spherical plano-convex unstable resonator with Gaussian reflectivity mirrors,which is based on the canonical formulation of SIEGMAN's theory for analyzing multi-element unstable resonators.The round-trip cylindrical Huygen's integral is expressed for the resonator in terms of spherical resonator analysis and ABCDM matrix.The Huygen's integral is transformed to a finite sum format by dividing the output mirror into several width-equal circles.The eigenmode and phase result of self-reproduce field of perfect empty resonator and misalignment empty resonator are obtained via numerical calculation.The calculation result indicates that when the radius and Gaussian reflectivity of output mirror are appropriately selected,the fundamental mode distribution of Gaussian beam which has a spot radius of 0.3cm can be obtained.The calculation result accords with the experiment result.Simultaneously the influence of the output mirror on the beam quality is also discussed.
  • [1]
    SAGHAFI S,WITHFORD M,LATIFI H et al.Beam propagation analysis in unstable laser resonators(ULR)[J].Proc SPIE,2003,4829:8~9.
    [2]
    MORIN M.Graded reflectivity mirror unstable laser resonators[J].Opt Quant Electron,1997,29(1):819~866.
    [3]
    CORBETT B,JUSTICE J,LAMBKIN P.High brightness lasers based on internal focus unstable resonators[J].SPIE,2004,5365:164~172.
    [4]
    NIKOLOV I P,BUCHVAROV I,GUBANOVA L A et al.High-power Nd:YAG lasers with variable reflectivity mirrors[J].SPIE,2001,4397:49~53.
    [5]
    MAKKI S,LEGER J.Mode shaping of a graded-reflectivity-mirror unstable resonator with an intra-cavity phase element[J].IEEE J Q E,2001,37(1):80~86.
    [6]
    SILIVERSTRI S D,MAGNI V,SVELTO O et al.Lasers with superGaussian mirrors[J].IEEE J Q E,1990,26(9):1500~1509.
    [7]
    LING D X.Numerical calculation of field distribution of confocal spherical resonator by the finite element method[J].Applied Laser,1999,19(2):69~72(in Chinese).
    [8]
    CHEN Z L,MA L K,JIANG Z F et al.Finite element analysis of thermal effect of LD endpumped laser medium[J].Laser Technology,2005,29(5):543~545(in Chinese).
    [9]
    ANTHONY E,SIEGMAN A.Canonical formulation for analyzing multielement unstable resonators[J].IEEE J Q E,1976,QE12(1):35~40.
  • Related Articles

    [1]XIA Huijun, YANG Huan, WU Xinming, DENG Wantao, GAO Weixiang, YANG Tianzhi, LI Biaohui. Measurement uncertainty of temperature pulsation meter based on instrument amplifier[J]. LASER TECHNOLOGY, 2025, 49(2): 296-300. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.022
    [2]LI Yuan, CHAI Yanhong, LIU Lanbo, MAO Zhe, ZHAI Xinhua. Research on uncertainty minimum ellipsoid envelope model of laser measurement system[J]. LASER TECHNOLOGY, 2022, 46(3): 293-300. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.001
    [3]ZHANG Hao, DAI Hong, FAN Hongying, CHEN Hao, JIANG Zewei, JIA Jing, MENG Qing'an, HU Shaoyun. Calibration and design of long focal length measurement instruments based on Talbot-Moiré effect[J]. LASER TECHNOLOGY, 2019, 43(4): 527-531. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.016
    [4]LONG Long, LI Zongfeng. 3-D position measurement algorithm based on laser displacement sensors[J]. LASER TECHNOLOGY, 2017, 41(4): 531-536. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.015
    [5]WU Zhaoyong, DU Zhengchun. Uncertainty analysis of laser radar measurement system based on error ellipsoid theory[J]. LASER TECHNOLOGY, 2017, 41(1): 29-33. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.007
    [6]ZHAO Qi, YANG Jie, JIANG Zewei, MENG Qing'an, FAN Hongying, LI Yiguo, GENG Xu. Calibration of measurement uncertainty of forward-scattering spectrometer probes[J]. LASER TECHNOLOGY, 2016, 40(1): 99-102. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.022
    [7]ZHOU Ying, ZHAO Hui, TAO Wei, ZHANG Hai-bo. Adaptive control method for imaging parameters of image sensor in laser triangulation displacement measurement[J]. LASER TECHNOLOGY, 2010, 34(5): 628-631. DOI: 10.3969/j.issn.1001-3806.2010.O5.014
    [8]YAN Shun-sheng, HU Shun-xing, HU Huan-ling, ZHONG Zhi-qing. Uncertainty analysis of aerosol wavelength exponent measured by Raman-Mie lidars[J]. LASER TECHNOLOGY, 2008, 32(6): 667-669,672.
    [9]YANG Shu-lian. Measurement of diffusivity of nanometer material by means of laser photothermal displacement technique[J]. LASER TECHNOLOGY, 2007, 31(1): 29-30.
    [10]ZHANG Peng, SHEN Xue-ju, NIU Yan-xiong, XUE Rui. Measurement of monochrome focal length based on single-slit fractional Fourier transform[J]. LASER TECHNOLOGY, 2005, 29(2): 222-224.
  • Cited by

    Periodical cited type(2)

    1. 秦树旺,毛耀,包启亮. 光电跟踪系统的模糊Ⅱ型控制技术研究. 激光技术. 2021(02): 147-154 . 本站查看
    2. 郑羽,李东,王艳林. 基于FPGA的精密指向组件控制系统设计. 工业控制计算机. 2019(07): 12-14+17 .

    Other cited types(3)

Catalog

    Article views (2) PDF downloads (7) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return