Advanced Search
ZHANG Xuelian, YANG Peng, LIU Yongjian, NING Ding. Principle of preparation and parameters test of polarization-maintaining fiber[J]. LASER TECHNOLOGY, 2024, 48(1): 34-39. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.006
Citation: ZHANG Xuelian, YANG Peng, LIU Yongjian, NING Ding. Principle of preparation and parameters test of polarization-maintaining fiber[J]. LASER TECHNOLOGY, 2024, 48(1): 34-39. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.006

Principle of preparation and parameters test of polarization-maintaining fiber

More Information
  • Received Date: November 08, 2022
  • Revised Date: January 15, 2023
  • Published Date: January 24, 2024
  • In order to develop a polarization-maintaining fiber with a working wavelength of 1310 nm, the prepare preform and stress rod of polarization-maintaining(PM) fiber were prepared by a modified chemical vapor deposition process. The high-quality PM fiber with precise geometric size was produced after processing, splicing, cleaning, and drawing. At the same time, an efficient test system was set up to measure the refractive index and geometry of preform, mode-field diameter (MFD), and numerical aperture(NA), and geometry of PM fiber by technologies such as the refractive near-field method, far-field scanning and, video gray scale technology (transmission near field). The results show that the standardized test system has simple operation and accurate results, and MFD is 6.26 μm, NA is 0.23, and cladding and coating diameter is 80 μm/135 μm/165 μm (accuracy ±0.7 μm). After the final test, 16.25% of the qualified fiber products are sampled randomly for high and low temperature aging, and the beat length and crosstalk change little after the experiment. The PM fiber developed in this design has stable performance, precise geometric size, uniform structure, low loss, and excellent polarization maintaining performance, which has been widely used in practical production.
  • [1]
    郑勇, 肖旺, 朱正伟. 一种大量程光纤弯曲损耗型线性位移传感器研究[J]. 光学学报, 2020, 40(12): 1206002.

    ZHENG Y, XIAO W, ZHU Zh W. Researd on an optial fiber linear displacenent sensor based on bending loss for use over large range[J]. Acta Optica Sinica, 2020, 40(12): 1206002(in Chinese).
    [2]
    贺兴龙. 高功率掺镱全光纤激光器关键单元技术研究[D]. 武汉: 华中科技大学, 2018: 26-28.

    HE X L. Research on key cell technology of ytterbium doped high power with all-fiber structure[D]. Wuhan: Huazhong University of Science and Technology, 2018: 26-28(in Chinese).
    [3]
    赵楠. 高功率掺镱光纤激光器中光子暗化效应研究[D]. 武汉: 华中科技大学, 2018: 25-27.

    ZHAO N. The study on photo-darkening effect in ytterbium doped high power fiber lasers[D]. WuHan: Huazhong University of Science and Technology, 2018: 25-27(in Chinese).
    [4]
    SCHREIBER T, RÖSER F, SCHMIDT O, et al. Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity[J]. Optics Express, 2005, 13(19): 7621-7630. DOI: 10.1364/OPEX.13.007621
    [5]
    谢璐. 1018 nm掺镱光纤激光器[D]. 武汉: 华中科技大学, 2014: 16-19.

    XIE L. 1018 nm Yb-doped fiber laser[D]. Wuhan: Huazhong University of Science and Technology, 2014: 16-19(in Chinese).
    [6]
    长飞光纤光缆有限公司. 保偏光纤的制造方法: 200410012671.6[P]. 2004-12-29.

    YANGTZE OPTICAL FIBRE AND CABLE Co., Ltd. Manufacturing method of polarization maintaining optical fibe: 200410012671.6[P]. 2004-12-29(in Chinese).
    [7]
    沈小平, 崔德运, 杨意, 等. 一种改善预制棒应力的退火装置和方法: 110818238A[P]. 2020-02-21.

    SHEN X P, CUI D Y, YANG Y, et al. An annealing device and method for improving stress of prefabricated rod: 110818238A[P]. 2020-02-21(in Chinese).
    [8]
    NADERI S, DAJANI I, GROSEK J, et al. Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers[J]. Optics Express, 2016, 24(15): 16550-16565. DOI: 10.1364/OE.24.016550
    [9]
    马静, 陈坚盾, 冯高锋, 等. 气相沉积与非气相沉积制造光纤预制棒[J]. 现代传输, 2015(6): 36-38.

    MA J, CHEN J D, FENG G F, et al. Vapor deposition and non-vapor deposition fabrication of optical fiber prefabricated rod[J]. Modern Transmission, 2015(6): 36-38(in Chinese).
    [10]
    廖延彪, 黎敏, 夏历. 光纤光学[M]. 第3版. 北京: 清华大学, 2021: 199-205.

    LIAO Y B, LI M, XIA L. Fiber optics[M]. 3rd ed. Beijing: Tsinghua University, 2021: 199-205(in Chinese).
    [11]
    许剑, 黄俊鹏, 张屹修, 等. 小弯曲半径下光纤宏弯损耗测试的拟合方法研究[J]. 电子元器件与信息技术, 2022, 6(1): 120-121.

    XU J, HUANG J P, ZHANG Y X, et al. Research on fitting method of photored macro variable loss test under small bending radius[J]. Electronic Components and Information Technology, 2022, 6(1): 120-121(in Chinese).
    [12]
    李虎, 郭子龙, 杨文婷, 等. 空芯光纤多模干涉型光纤液位传感技术研究[J]. 激光技术, 2022, 46(1): 120-124. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.012

    LI H, GUO Z L, YANG W T, et al. Research of the liquid level sensing technology based on a hollow fiber multimode interference optical fiber[J]. Laser Technology, 2022, 46(1): 120-124(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.01.012
    [13]
    赵耀, 高业胜, 韩正英, 等. 保偏光纤拍长与折射率测量技术研究[J]. 计量与测试技术, 2022, 49(3): 20-25.

    ZHAO Y, GAO Y Sh, HAN Zh Y, et al. Research on the measurement of beat length and refractive index of polarization-maintaining fiber[J]. Metrology and Measurement Technology, 2022, 49(3): 20-25(in Chinese).
    [14]
    广东亿源通科技股份有限公司. 一篇文章了解保偏光纤原理、快慢轴、保偏拍长、消光比[EB/OL]. (2021-04-15)[2022-11-10]. https://zhuanlan.zhihu.com/p/365064484.

    HYC Co., Ltd. An article to understand the principle of polarization-maintaining fiber, fast and slow axis, polarizing beat length, extinction ratio[EB/OL]. (2021-04-15)[2022-11-10]. https://zhuanlan.zhihu.com/p/365064484 (in Chinese).
    [15]
    刘军号, 李瑞辰. 高精度干涉式光纤陀螺热漂移分析[J]. 中国光学, 2020, 13(2): 333-343.

    LIU J H, LI R Ch. Themal drift analysis of high-precision interferometric fiber optic gyroscop[J]. Chinese Optics, 2020, 13(2): 333-343(in Chinese).
    [16]
    JAIN D, JUNG Y, BARUA P, et al. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers[J]. Optics Express, 2015, 23(6): 7407-7415. DOI: 10.1364/OE.23.007407
    [17]
    刘峰, 史毅, 葛镇昂, 等. 基于双向瑞利散射的单模光纤多参数同时测量方法[J]. 激光与电子学进展, 2023, 60(7): 0712004.

    LIU F, SHI Y, GE Zh A, et al. Muti-parameter measurement method of single mode fiber based on bidirectional Reyleigh scattering[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0712004(in Chinese).
    [18]
    无锡法尔胜光电科技有限公司. 一种保偏光纤的制备方法: 110746109A[P]. 2020-02-04.

    FALSON OPTOELECTRONIC TECHNOLOGY Co., Ltd. A preparation method of polarization maintaining fiber: 110746109A[P]. 2020-02-04(in Chinese).
    [19]
    烽火通信科技股份有限公司, 锐光信通科技有限公司. 一种保偏光纤: 108845389B[P]. 2020-05-05.

    FENGHUO COMMUNICATION TECHNOLOGY Co., Ltd., RUI GUANG COMMUNICATION TECHNOLOGY Co., Ltd. A polarization-maintaining fiber: 108845389B[P]. 2020-05-05(in Chinese).
    [20]
    薛梦驰, 左琼华. 光纤微弯损耗的新测试方法仿真算法及验证[J]. 光学学报, 2021, 41(18): 1806001.

    XUE M Ch, ZUO Q H. Simulation algorithm and verification for new test methods of microbending loss in optical fibers[J]. Acta Optica Sinica, 2021, 41(18): 1806001(in Chinese).
    [21]
    王学勤, 张彤, 梁兰菊, 等. 光纤环偏振耦合分布及绕环光纤拍长测试技术[J]. 激光与光电子学进展, 2020, 57(23): 230602.

    WANG X Q, ZHANG T, LIANG L J, et al. Test technique of pola-rization-coupling distribution of fiber coil and beat length of used fiber[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230602(in Chinese).
  • Related Articles

    [1]GUO Yu, YANG Yongming. Application of 3-D laser scanning technology in the preservation of historical buildings[J]. LASER TECHNOLOGY, 2024, 48(4): 608-612. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.022
    [2]LANG Chuanping, YANG Renhuai. High quality infrared video image restoration algorithm based on the improved ridgelet transform[J]. LASER TECHNOLOGY, 2015, 39(2): 247-251. DOI: 10.7510/jgjs.issn.1001-3806.2015.02.022
    [3]ZHANG Huixia. Study on building modeling based on 3-D laser scanning technology[J]. LASER TECHNOLOGY, 2014, 38(3): 431-434. DOI: 10.7510/jgjs.issn.1001-3806.2014.03.032
    [4]SITU Jia-min, LIU Yu, YAN Mu-xi, ZHANG Xiao-yu. Research of a new method for marking laser-induced gray images[J]. LASER TECHNOLOGY, 2010, 34(3): 389-391. DOI: 10.3969/j.issn.1001-3806.2010.03.029
    [5]WANG Chun-yong, LI Xin, LAI Jian-cheng, JIANG Hai-jiao, ZHANG Chun-yan, BIAN Bao-min, LI Zhen-hua. Video frequency accumulation for the improvement of signal-to-noise ratio in laser probing[J]. LASER TECHNOLOGY, 2010, 34(3): 335-338. DOI: 10.3969/j.issn.1001-3806.2010.03.014
    [6]LI Wu-jun, YANG Ai-fen, WANG Shi-yu, CA De-fang, WENG Jian-guo, GUO Zhen. Study of space coupling technology of fiber bundle coupling LD output beams[J]. LASER TECHNOLOGY, 2006, 30(3): 304-307.
    [7]YANG Zhi, DAI Yi-fan, YAN Shu-hua. Manufacturing system for gray-scale masks’ mask patterns’ making and technique study[J]. LASER TECHNOLOGY, 2004, 28(4): 406-409.
    [8]Zhang Yixin, Chen Linhua. The study of dual beam scanning far-field by polygoy[J]. LASER TECHNOLOGY, 2000, 24(5): 301-305.
    [9]Zeng Xiaodong, An Yuying, Yu Changqing. Near field measurement of laser diodes[J]. LASER TECHNOLOGY, 1998, 22(2): 127-129.
    [10]He Yungui, Liu Xiaodong, Hu Bing, Song Enming, Li Shimin. A way of carve poly-gray level TIF image on the laser carving machine[J]. LASER TECHNOLOGY, 1995, 19(5): 308-310.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (3) PDF downloads (14) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return