Advanced Search
CHEN Liguang, LIAO Zixi, ZENG Xiaye, WANG Xitong, HUANG Qingping, ZHAO Lijuan. A fast strain sensing for intelligent overhead line based on slope-assisted technique[J]. LASER TECHNOLOGY, 2023, 47(1): 127-134. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.020
Citation: CHEN Liguang, LIAO Zixi, ZENG Xiaye, WANG Xitong, HUANG Qingping, ZHAO Lijuan. A fast strain sensing for intelligent overhead line based on slope-assisted technique[J]. LASER TECHNOLOGY, 2023, 47(1): 127-134. DOI: 10.7510/jgjs.issn.1001-3806.2023.01.020

A fast strain sensing for intelligent overhead line based on slope-assisted technique

More Information
  • Received Date: October 17, 2021
  • Revised Date: August 03, 2022
  • Published Date: January 24, 2023
  • In order to improve the real-time performance of state sensing, the slope-assisted techniqueand the least-squares spectrum fit method based on the pseudo-Voigt model were introduced into the strain measurement of optical fiber composite overhead lines. The programs about the least squares spectrum fitting method and the slope-assisted technique based on the pseudo-Voigt model were written and applied to the strain measurement along an optical fiber composite overhead line. Based on the measured Brillouin spectra, the influence of the signal-to-noise ratio (SNR) of the working point gain and the Brillouin frequency shift (BFS) on the accuracy of the slope-assisted technique was systematically investigated. The results reveal that the BFS error decreases exponentially with SNR. The BFS error decreases rapidly and then increases slightly with the difference between BFS and working point frequency. The strain error of the slope-assisted technique is less than 60 με when the SNR of Brillouin gain at the working point is not less than 25 dB and at the same time, the frequency at the working point is always less or larger than the BFS. In addition, the corresponding critical SNR of 60 με is presented for different BFSs, and the critical SNR corresponding to different cases can be obtained by interpolation. The measurement time and computation time of the slope-assisted technique are about 1/161 and 1/600 of that of the spectrum fitting method, respectively. The work provides a reference for improving the real-time performance of sate sensing of intelligent optical fiber composite overhead lines.
  • [1]
    OOURA K, KANEMARU K, MATSUBARA R, et al. Application of a power line maintenance information system using OPGW to the Nishi-Gunma UHV line[J]. IEEE Transactions on Power Delivery, 1995, 10(1): 511-517. DOI: 10.1109/61.368360
    [2]
    中华人民共和国国家质量监督检验检疫总局中国国家标准化管理委员会. 光缆第4部分——分规范光纤复合架空地线: GB/T 7424.4 -2003/IEC 60794-4-1[S]. 北京: 中国标准出版社, 2004: 1-2.

    CHINA NATIONAL STANDARDIZING COMMITTEE, GENERAL ADMINISTRATION OF QUALITY SUPERVISION, INSPECTION AND QUARANTINE OF THE PEOPLE'S REPUBLIC OF CHINA. Optical fibre cables-Part 4. Section specification-optical fibre composite overhead ground wire: GB/T 7424.4-2003/IEC 60794-4-1[S]. Beijing: China Standard Press, 2004: 1-2(in Chinese).
    [3]
    吴劲松, 黄琦, 吴钟博, 等. 光纤复合架空相线的工程应用研究[J]. 中国电力, 2013, 46(10): 106-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDL201310027.htm

    WU J S, HUANG Q, WU Zh B, et al. Study on applications of optical phase conductors (OPPCs) in engineering[J]. Electric Power, 2013, 46(10): 106-110(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDL201310027.htm
    [4]
    赵晗祺, 连伟华, 吴斌, 等. 风振对OPGW偏振态和通信的影响[J]. 光通信技术, 2021, 45(3): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GTXS202103014.htm

    ZHAO H Q, LIAN W H, WU B, et al. Effect of wind vibration on polarization of OPGW and communication[J]. Optical Communication Technology, 2021, 45(3): 58-62(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GTXS202103014.htm
    [5]
    SUN J R, YAO X L, XU W J, et al. Lightning test method for optical-fiber overhead ground wires[J]. IEEE Transactions on Power Delivery, 2018, 33(5): 2412-2419. DOI: 10.1109/TPWRD.2018.2823061
    [6]
    汪佛池. 输电线路铝导线憎水性防覆冰涂层的研究[D]. 北京: 华北电力大学, 2011: 1-2.

    WANG F Ch. Research on ice-phobic coating with hydrophobicity used for transmission aluminum line[D]. Beijing: North China Electric Power University, 2011: 1-2(in Chinese).
    [7]
    WU D, CAO H, LI D, et al. Energy-efficient reconstruction method for transmission lines galloping with conditional generative adversarial network[J]. IEEE Access, 2020, 8: 17310-17319. DOI: 10.1109/ACCESS.2020.2966739
    [8]
    周游, 隋三义, 陈洁, 等. 基于Himawari-8静止气象卫星的输电线路山火监测与告警技术[J]. 高电压技术, 2020, 46(7): 2561-2569. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202007035.htm

    ZHOU Y, SUI S Y, CHEN J, et al. Monitor and alarm technology of wildfire occurrences in transmission lines corridors based on Himawari-8 geostationary meteorological satellite[J]. High Voltage Engineering, 2020, 46(7): 2561-2569(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ202007035.htm
    [9]
    符杨, 荣帅昂, 刘恩圻, 等. 架空输电通道图像监测中大场景双目测距的方法及校正算法[J]. 高电压技术, 2019, 45(2): 377-385. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201902004.htm

    FU Y, RONG Sh A, LIU E Q, et al. Calibration method and regulation algorithm of binocular distance measurement in the large scene of image monitoring for overhead transmission lines[J]. High Voltage Engineering, 2019, 45(2): 377-385(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201902004.htm
    [10]
    彭向阳, 宋爽, 钱金菊, 等. 无人机激光扫描作业杆塔位置提取算法[J]. 电网技术, 2017, 41(11): 3670-3677. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201711040.htm

    PENG X Y, SONG Sh, QIAN J J, et al. Research on automatic positioning algorithm of power transmission towers[J]. Power System Technology, 2017, 41(11): 3670-3677(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201711040.htm
    [11]
    刘紫娟, 李永倩, 张立欣, 等. 基于光纤传感的形状传感发展研究[J]. 激光技术, 2021, 45(6): 760-766. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202206002.htm

    LIU Z J, LI Y Q, ZHANG L X, et al. Research on the development of shape sensing based on optical fiber sensing[J]. Laser Technology, 2021, 45(6): 760-766(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202206002.htm
    [12]
    刘闯闯, 朱学华, 苏浩. 高灵敏度全光纤电流传感器研究进展[J]. 激光技术, 2021, 45(2): 175-181. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.005

    LIU Ch Ch, ZHU X H, SU H. Research progress of high sensitivity all fiber optic current sensor[J]. Laser Technology, 2021, 45(2): 175-181(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.02.005
    [13]
    郭斌, 刘永莉, 周文佐, 等. 布里渊光时域反射技术应用于模型实验测试的研究[J]. 科学技术与工程, 2021, 21(4): 1422-1428. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202104025.htm

    GUO B, LIU Y L, ZHOU W Z, et al. Study of Brillouin optical time-domain reflectometer applied to model experimental test[J]. Science Technology and Engineering, 2021, 21(4): 1422-1428(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202104025.htm
    [14]
    SUN J X, ZHANG Z G, LI Y M, et al. Distributed transmission line ice-coating recognition system based on BOTDR temperature monitoring[J]. Journal of Lightwave Technology, 2021, 39(12): 3967-3973.
    [15]
    王振伟, 孔勇, 丁伟, 等. 复合光纤对φ-OTDR振动传感远程敏感[J]. 激光技术, 2021, 45(4): 436-440. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.005

    WANG Zh W, KONG Y, DING W, et al. Composite optical fiber bring about remote sensitive to vibration of φ-OTDR[J]. Laser Technology, 2021, 45(4): 436-440(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.04.005
    [16]
    MOTIL A, BERGMAN A, TUR M. State of the art of Brillouin fiber-optic distributed sensing[J]. Optics & Laser Technology, 2016, 78: 81-103.
    [17]
    BERNINI R, MINARDO A, ZENI L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering[J]. Optical Letters, 2009, 34(17): 2613-2615.
    [18]
    URRICELQUI J, ZORNOZA A, SAGUES M, et al. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation[J]. Optics Express, 2012, 20(24): 26942-26949.
    [19]
    MARAVAL D, GABET R, JAOUEN Y, et al. Dynamic optical fiber sensing with Brillouin optical time domain reflectometry: Application to pipeline vibration monitoring[J]. Journal of Lightwave Technology, 2017, 35(16): 3296-3302.
    [20]
    MINARDO A, COSCETTA A, BERNINI R, et al. Structural damage identification in an aluminum composite plate by Brillouin sensing[J]. IEEE Sensors Journal, 2015, 15(2): 659-660.
    [21]
    WU H, WANG L, GUO N, et al. Brillouin optical time-domain analyzer assisted by support vector machine for ultrafast temperature extraction[J]. Journal of Lightwave Technology, 2017, 35(19): 4159-4167.
  • Related Articles

    [1]LÜ Zishang, HU Jinhua, REN Danping, ZHAO Jijun. Research on temperature strain sensing characteristics of flat top CLPG-CFBG cascade structure[J]. LASER TECHNOLOGY, 2024, 48(1): 65-70. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.011
    [2]WANG Chengliang, YANG Qingsheng, LI Jun, ZHONG Weifeng, CHEN Zhiming. Fast demodulation method of optical fiber temperature and strain based on neural network[J]. LASER TECHNOLOGY, 2022, 46(2): 254-259. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.017
    [3]WANG Gao, ZHANG Meiju, HUANG Manguo, LIANG Xiaobo, LIU Zhichao. Research on load sensing system based on orthogonal fiber grating array[J]. LASER TECHNOLOGY, 2021, 45(2): 143-146. DOI: 10.7510/jgjs.issn.1001-3806.2021.02.003
    [4]LI Wenwen, LIU Shupeng, WANG Zhongyang. Fast super-resolution fluorescence microscopy by compressed sensing[J]. LASER TECHNOLOGY, 2020, 44(2): 196-201. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.010
    [5]YANG Zhengli, SHI Wen, CHEN Haixia. Adaptive compression sensing of optical fiber perimeter alarm signal[J]. LASER TECHNOLOGY, 2020, 44(1): 74-80. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.013
    [6]ZHANG Jian, HUA Yinqun, CAO Jiangdong. Simulation of propagation characteristics of stress wave in copper films with laser shock processing[J]. LASER TECHNOLOGY, 2016, 40(4): 601-605. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.030
    [7]ZHA Shengming, ZHU Zhijing, CHI Hao. Research of key issues of photonic-assisted compressive sensing technology[J]. LASER TECHNOLOGY, 2016, 40(4): 565-570. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.023
    [8]JING Ning, WANG Zhi-bin, ZHANG Ji-long, CHEN Yuan-yuan. 弹光调制非线性光程差干涉信号的快速反演[J]. LASER TECHNOLOGY, 2012, 36(2): 268-270,288. DOI: 10.3969/j.issn.1001-3806.2012.02.033
    [9]LIN Rui, LIU Qi-neng, ZHANG Cui-ling. A new fast algorithm for gyrator transform[J]. LASER TECHNOLOGY, 2012, 36(1): 50-53. DOI: 10.3969/j.issn.1001-3806.2012.01.014
    [10]Jiang Lingzhen, Liu Haijiang, Li Chenjiang, Zou Lixun, Geng Wanzhen. Study of transverse strain near tip of crack type Ⅰ using holographic interferometry[J]. LASER TECHNOLOGY, 1994, 18(2): 106-109.
  • Cited by

    Periodical cited type(1)

    1. 李强. 关于智能化光纤传感器系统的设计与应用探讨. 现代制造技术与装备. 2024(S1): 7-9 .

    Other cited types(0)

Catalog

    Article views (412) PDF downloads (4) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return