Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 46 Issue 4
Jul.  2022
Article Contents
Turn off MathJax

Citation:

Influence of electron's initial position on spatial radiation of high-energy electrons

  • Corresponding author: TIAN Youwei, tianyw@njupt.edu.cn
  • Received Date: 2021-05-28
    Accepted Date: 2021-06-15
  • In order to study the relationship between the radiation of high-energy electrons and the electron's initial position, a scattering model of a single high-energy electron interacting with a Gaussian laser pulse was constructed according to the Lagrange's equation. And the method of numerical simulation was adopted to obtain the trajectory of the electron and the spatial radiation characteristics of the scattered light by MATLAB. The influence of the initial position of the electron on the space energy radiation was discussed in detail. The results show that the initially static high-energy electron first oscillates in the +z direction in a plane, and then travels along a straight line after interacting with the linearly polarized tightly focused intense laser. Both the maximum radiated energy and its corresponding radiation direction are greatly affected by the electron's initial position, while a peak value of the former exists as the initial position of the electron moves to the positive direction of z axis, and the azimuth angle of the latter stays unchanged while the polar angle gradually decreasing but finally stabilizing. The maximum radiation energy in the whole space is obtained when the electron is initially set at (0, 0, -7λ0) (λ0 is the wavelength of the laser) with the polar angle and the azimuth angle being 23.5° and 180°, respectively. The research indicates that the highest possible intensity of radiation can be obtained by setting the electron's initial location reasonably.
  • 加载中
  • [1]

    MAINE P, STRICKLAND D, BADO P, et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics, 1988, 24(2): 398-403. doi: 10.1109/3.137
    [2]

    PERRY M D, MOUROU G. Terawatt to petawatt sub-picosecond lasers[J]. Science, 1994, 264(5161): 917-924. doi: 10.1126/science.264.5161.917
    [3]

    EIDAM T, HANDF S, SEISE E, et al. Femtosecond fiber CPA system emitting 830W average output power[J]. Optics Letters, 2010, 35(2): 94-96. doi: 10.1364/OL.35.000094
    [4]

    MOUROU G A, BARRY C P J, PERRY M D. Ultrahigh-intensity lasers: Physics of the extreme on a tabletop[J]. Physics Today, 1998, 51(1): 22-28. doi: 10.1063/1.882131
    [5]

    CORKUM P B, KRAUSZ F. Attosecond science[J]. Nature Physics, 2007, 3(6): 381-387. doi: 10.1038/nphys620
    [6]

    KRAUSZ F, IVANOV M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234. doi: 10.1103/RevModPhys.81.163
    [7]

    POGORELSKY I V, BEN-ZVI I, HIROSE T, et al. Demonstration of 8×1018 photons/second peaked at 1.8Å in a relativistic Thomson scattering experiment[J]. Physical Review Accelerators & Beams, 2000, 3(9): 090702.
    [8]

    SAKAI I, AOKI T, DOBASHI K, et al. Production of high brightness γ rays through backscattering of laser photons on high-energy electrons[J]. Physical Review Accelerators & Beams, 2003, 6(9): 091001.
    [9]

    YAN W Ch, FRUHLING C, GOLOVIN G, et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520. doi: 10.1038/nphoton.2017.100
    [10]

    KHRENNIKOV K, WENZ J, BUCK A, et al. Tunable all-optical quasimonochromatic thomson X-ray source in the nonlinear regime[J]. Physical Review Letters, 2015, 114(19): 195003. doi: 10.1103/PhysRevLett.114.195003
    [11]

    ZHUANG J W, YAN Y L, ZHOU X. Quasi-monochromatic spectral emission characteristics from electron collision with tightly focused laser pulses[J]. Laser Physics, 2021, 31(3): 035401. doi: 10.1088/1555-6611/abe23b
    [12]

    MIKHAILOVA Y M, PLATONENKO V T, RYKOVANOV S G. Generation of an attosecond X-ray pulse in a thin film irradiated by an ultrashort ultrarelativistic laser pulse[J]. Journal of Experimental & Theoretical Physics Letters, 2005, 81(11): 571-574.
    [13]

    PHUOC K T, CORDE S, THAURY C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6: 308-311. doi: 10.1038/nphoton.2012.82
    [14]

    THOMLINSON W. Medical applications of synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research Section, 1992, A319(1-3): 295-304.
    [15]

    LEE K, CHUNG S Y, PARK S H, et al. Effects of high-order fields of a tightly focused laser pulse on relativistic nonlinear Thomson scattered radiation by a relativistic electron[J]. Europhysics Letters, 2010, 89(6): 613-630.
    [16]

    CHI Z, DU Y, HUANG W, et al. Linearly polarized X-ray fluorescence computed tomography based on a Thomson scattering light source: A Monte Carlo study[J]. Journal of Synchrotron Radiation, 2020, 27(3): 737-745. doi: 10.1107/S1600577520003574
    [17]

    BALTUSKA A, UDEM T, UIBERACKER M, et al. Attosecond control of electronic processes by intense light fields[J]. Nature, 2003, 421(6923): 611-615. doi: 10.1038/nature01414
    [18]

    LEE K, CHA Y H, SHIN M S, et al. Relativistic nonlinear Thomson scattering as attosecond X-ray source[J]. Physical Review, 2003, E67(2): 26502-26502.
    [19]

    ZHENG J, SHENG Zh M, ZHANG J, et al. Study on the factors affecting the single electron nonlinear Thomson scattering[J]. Acta Physica Sinica, 2005, 54(3): 1018-1035(in Chinese). doi: 10.7498/aps.54.1018
    [20]

    LI K, LI L X, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laser pulses[J]. Optik, 2019, 183: 813-817. doi: 10.1016/j.ijleo.2019.02.154
    [21]

    WANG Y Q, WANG C L, LI K, et al. Spatial radiation features of Thomson scattering from electron in circularly polarized tightly focused laser beams[J]. Laser Physics Letters, 2021, 18(1): 015303. doi: 10.1088/1612-202X/abd170
    [22]

    HE F, YU W, LU P X, et al. Ponderomotive acceleration of electrons by a tightly focused intense laser beam. Physical Review, 2003, E68(4): 046407.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article views(4025) PDF downloads(23) Cited by()

Proportional views

Influence of electron's initial position on spatial radiation of high-energy electrons

    Corresponding author: TIAN Youwei, tianyw@njupt.edu.cn
  • 1. Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • 2. College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • 3. College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract: In order to study the relationship between the radiation of high-energy electrons and the electron's initial position, a scattering model of a single high-energy electron interacting with a Gaussian laser pulse was constructed according to the Lagrange's equation. And the method of numerical simulation was adopted to obtain the trajectory of the electron and the spatial radiation characteristics of the scattered light by MATLAB. The influence of the initial position of the electron on the space energy radiation was discussed in detail. The results show that the initially static high-energy electron first oscillates in the +z direction in a plane, and then travels along a straight line after interacting with the linearly polarized tightly focused intense laser. Both the maximum radiated energy and its corresponding radiation direction are greatly affected by the electron's initial position, while a peak value of the former exists as the initial position of the electron moves to the positive direction of z axis, and the azimuth angle of the latter stays unchanged while the polar angle gradually decreasing but finally stabilizing. The maximum radiation energy in the whole space is obtained when the electron is initially set at (0, 0, -7λ0) (λ0 is the wavelength of the laser) with the polar angle and the azimuth angle being 23.5° and 180°, respectively. The research indicates that the highest possible intensity of radiation can be obtained by setting the electron's initial location reasonably.

引言
  • 自20世纪末啁啾脉冲放大(chirped pulse amplification, CPA) 技术问世以来,已有众多学者在强激光与物质相互作用领域[1-3],尤其是超快激光物理方向[4-6]开展了相关研究。相对论强度激光束中的光子经与高能电子相互作用产生汤姆逊散射,而由于多普勒频移的存在,该过程是非线性的。利用非线性汤姆逊散射效应制成的激光器是X射线[7]与γ射线[8-9]的产生途径之一,也是单色激光[10-11]和超短阿秒(1as=10-18s)激光[12-13]的重要辐射源,这在生物医药[14-16]、原子物理与核物理[15, 17]等学科中观测超快过程有着诸多应用。

    应用场景的广泛促使研究者对相对论情况下非线性汤姆逊散射进行理论分析。LEE等人利用计算机模拟了起始位于坐标原点且静止的单个电子在不同偏振态的强激光作用下汤姆逊散射的空间特征,发现了频谱的调制结构[18]。ZHENG等人在LEE的研究基础之上探究了电子初速度不为0时电子的辐射能量及功率角分布[19]。LI等人则以入射激光强度为变量,提出在线偏振激光下空间辐射具有双叶性[20]。WANG等人以圆偏振紧聚焦激光与初始静止于原点的电子相互作用为研究对象,在3维坐标系下总结了角辐射与电子轨迹间的联系[21]

    本文中探讨了初始状态静止的单电子与线偏振紧聚焦激光相互作用的运动轨迹,并在前人的研究基础上研究了电子初始位置对高能电子空间辐射的影响。模拟结果表明,电子初始位置对全空间最大能量辐射方向及相应能量值均有较大的影响,随着电子沿z轴正向移动,最大能量辐射方向的极角逐步减小并趋于一常数,而最大辐射能量具有极大值,这说明通过合理设置电子的初始位置可以获得强度尽可能高的辐射。

1.   电子与激光作用模型
  • 聚焦高斯脉冲激光场可由经$\frac{m c^{2}}{e}$归一化的激光振幅a0(其中,me分别为电子的静止质量和电荷量)、激光脉宽L、光束半径w、相位φ等参量描述。其中$a_{0}=0.85 \times 10^{-9} \lambda_{0} \sqrt{I}$,I为峰值光强,λ0为激光波长,λ0=1μm。光束半径w是坐标z的函数,其间的关系为$w(z)=w_{0}\left(1+\frac{z^{2}}{z_{\mathrm{R}}^{2}}\right)^{1 / 2}$,其中w0为该激光的束腰半径,$z_{\mathrm{R}}=w_{0}^{2} / 2$为瑞利长度。

    笛卡尔坐标系下激光脉冲的相位φ具有如下关系式[22]:

    式中,η=z-tt为时间;$\varphi_{R}=\frac{x^{2}+y^{2}}{2 R(z)}$为波阵面曲率相关相位,$R(z)=z\left(1+\frac{z_{\mathrm{R}}^{2}}{z^{2}}\right) ; \varphi_{\mathrm{G}}=\frac{z}{z_{\mathrm{R}}}$为Guoy相移,其与初始位相φ0均由激光本身所决定。

    于是高斯激光脉冲的矢势可用下式表示[22]

    式中, al=exp(-η2/L2ρ2/w2),ρ2=x2+y2, δ为偏振参量,对于线偏振光,δ=0;xy分别表示x, y方向单位矢量。应注意的是,上述模型中的时空坐标已分别被ω0-1k0-1归一化,其中ω0k0分别是激光的频率和波数。

    直角坐标系中光场的矢势分量可以表示为[22]:

    根据库伦规范$\nabla \cdot{ \boldsymbol{a}}=0$($\nabla \cdot{ \boldsymbol{a}}$表示对矢势a求散度),矢势的纵向分量为[22]

    式中, θ=π-arctan φG

    线偏振高斯激光脉冲与单电子相互作用的示意图如图 1所示。图中ϕθ分别代表电子与激光相互作用发出辐射的方位角与极角。这里,假设激光脉冲沿+z轴传播,初始时刻电子静止于z轴。

    Figure 1.  Schematic diagram of the interaction between the electron and the incident laser pulse

    电子在电磁场中的运动可以用拉格朗日方程和电子的能量方程描述[22]

    式中,$\nabla_\boldsymbol{a}$表示求a的梯度,u是用光速c归一化的电子速度,p=γu是经mc归一处理的电子动量,γ=(1-u2)-1/2是相对论因子,也即归一化的电子能量。

    将(3)式和(4)式代入(5)式和(6)式,得到如下方程组[22]

    式中,ux, uy, uz分别为电子在相应坐标方向上的速度分量,axayaz分别表示矢势ax, y, z这3个坐标轴上的分量。

    通过求解以上偏微分方程组,可以确定电子在与激光相互作用过程中运动和能量的变化过程。

    由电动力学相关知识,以相对论速度运动的电子会向空间发出电磁辐射。单位立体角内的辐射总能量可以表示为[21]

    式中,$\frac{\mathrm{d} W(t)}{\mathrm{d} \mathit{\Omega}}$已被$\frac{e^{2} \omega_{0}^{2}}{4 \pi c}$归一化; n为能量辐射方向;t是观察点相对于电子与激光相互作用时间t′的延迟时间,其间的关系为:

    式中, R0是观察点与电子和激光相互作用点之间的距离,r表示电子的位矢。

2.   数值模拟结果
  • 借助MATLAB软件对高能电子与线偏振高斯激光脉冲的作用过程进行计算模拟,得到电子在z轴具有不同初始位置时的运动轨迹及相应的空间辐射特性。所使用的激光脉冲为沿+z轴传播且极化方向沿x轴的线偏振光,考虑到当前实验室所能达到的条件,选取激光的归一化激光振幅a0=6(对应激光峰值光强I=4.97×1019W/cm2)、脉宽L=3λ0(10fs)、束腰半径w0=3λ0(3μm),以及电子的归一化初始能量γ0=1(初速度为0)。电子初始位于z轴且位置区间为[-10λ0, 10λ0]。

    初始位置在(0, 0, -10λ0)处的电子与激光脉冲相互作用后,其沿+z轴在xOz平面上做振荡运动,且振荡幅度和单次振荡经过的水平距离均有着先增大后减小的特点,最后沿略微向下偏离z轴的方向做直线运动。图 2中给出了作用过程中电子的空间能量辐射分布情况。颜色越深表征在该方向上辐射能量越大。由于方位角ϕ具有周期性,因而空间能量辐射在0°和360°处是连续的。由图可见,空间辐射能量较大的两支分别分布在(θ, ϕ)≈(30°, 0°)和(θ, ϕ)≈(30°, 180°)方位上,其中以(25.5°, 180°)处的辐射能量最大,其值为2.53×107。定义当电子初始位置一定(z=z0)时,使单位立体角辐射能量达到最大值对应的角度(θ, ϕ)为最大能量辐射方向,记为(θmax, ϕmax),即$\left[\frac{\mathrm{d} W(t)}{\mathrm{d} \mathit{\Omega}}\left(z_{0}, \theta, \phi\right)\right]_{\max } \equiv \frac{\mathrm{d} W(t)}{\mathrm{d} \mathit{\Omega}}\left(z_{0}, \theta_{\max }, \phi_{\max }\right)$。显然此时(θmax, ϕmax)=(25.5°, 180°)。

    Figure 2.  Motion trajectory of the electron and its spatial distribution of energy radiation when the electron has the initial position (0, 0, -10λ0)

    调整电子初始位置至(0, 0, -7λ0)得到图 3。此时电子轨迹的振荡部分和直线运动部分在z轴上的投影区域都有所展宽,且振荡幅度最大值较初始位置在(0, 0, -10λ0)处的有所增大,其余性质与图 2所示无异。空间能量辐射的分布特征几乎保持一致,能量仍是集中在关于z轴对称的两支上,此时的最大能量辐射方向(θmax, ϕmax)=(23.5°, 180°),对应的辐射能量为2.76×107,较前有所增加。

    Figure 3.  Motion trajectory of the electron and its spatial distribution of energy radiation when the electron has the initial position (0, 0, -7λ0)

    进一步将电子初始位置置于(0, 0, -4λ0)得到图 4。此时电子轨迹的振荡部分和直线运动部分在z轴上的投影区域进一步展宽,振荡幅度最大值也进一步略微增大。空间能量辐射分布仍旧几乎保持不变,此时最大能量辐射方向(θmax, ϕmax)=(22.5°, 180°),在该方向上的辐射能量为2.58×107,较前又有所减小。

    Figure 4.  Motion trajectory of the electron and its spatial distribution of energy radiation when the electron has the initial position (0, 0, -4λ0)

    由上可见,在电子初始位置由-10λ0逐渐向+z轴移动的过程中,最大能量辐射方向的方位角ϕmax始终为180°,而极角θmax则有逐渐减小的趋势。此外,最大辐射能量呈现出先增大后减小的规律。为进一步探究电子初始位置对空间能量辐射的影响,以λ0为间隔绘制了在[-10λ0, 10λ0]区间内最大能量辐射方向及该方向上辐射能量与电子初始位置的关系,如图 5所示。由于在该范围内ϕmax始终保持180°不变,故未在图中画出其变化趋势。

    Figure 5.  Relationship between the maximum radiated energy as well as its corresponding angle and the initial position of the electron

    图 5可知,θmax随电子初始位置沿+z轴移动逐渐减小,这表明具有最大空间辐射能量的一支逐渐靠近z轴,并在z=2λ0处开始稳定在20.5°,此后保持该值不变。而最大辐射能量随z轴坐标的增加呈现先增后减的变化规律,且在z=-7λ0处达到最大值2.76×107。此外,还注意到即使θmax不同,但最大辐射能量在区间[-10λ0, -4λ0]上关于z=-7λ0具有一定对称性。

    综上所述,初始状态静止的具有不同初始位置的电子与高能激光相互作用的轨迹都呈现沿+z轴振荡行进,最后沿直线运动的特征,且当电子初始位置位于(0, 0, -7λ0)时,在最大能量辐射方向(θmax, ϕmax)=(23.5°, 180°)处具有最大辐射能量2.76×107

3.   结论
  • 依据拉格朗日方程构建了高能电子与紧聚焦高斯激光脉冲的相互作用模型,利用MATLAB在单电子情形下通过对运动轨迹及辐射特性的模拟,探究了电子初始位置对其空间能量辐射的影响。结果表明,高能电子经与强激光的相互作用,其在xOz平面内先朝+z轴沿之字形运动,最后做直线运动。此外,模拟结果还显示出电子初始位置对空间最大辐射能量及其辐射方向均有较大影响,随着电子初始位置向+z轴移动,空间最大辐射能量具有先增大后减小的特征,存在一个极大值,且最大能量辐射方向的极角将逐渐减小并最终稳定在20.5°,而方位角始终保持180°不变。空间最大辐射能量在电子初始位置(0, 0, -7λ0)、方向(θ, ϕ)=(23.5°, 180°)处取得。

Reference (22)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return