Citation: | YAN Yilü, ZHOU Xi, REN Shanling, LIU Hui, TIAN Youwei. Influence of electron's initial position on spatial radiation of high-energy electrons[J]. LASER TECHNOLOGY, 2022, 46(4): 556-560. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.019 |
[1] |
MAINE P, STRICKLAND D, BADO P, et al. Generation of ultrahigh peak power pulses by chirped pulse amplification[J]. IEEE Journal of Quantum Electronics, 1988, 24(2): 398-403. DOI: 10.1109/3.137
|
[2] |
PERRY M D, MOUROU G. Terawatt to petawatt sub-picosecond lasers[J]. Science, 1994, 264(5161): 917-924. DOI: 10.1126/science.264.5161.917
|
[3] |
EIDAM T, HANDF S, SEISE E, et al. Femtosecond fiber CPA system emitting 830W average output power[J]. Optics Letters, 2010, 35(2): 94-96. DOI: 10.1364/OL.35.000094
|
[4] |
MOUROU G A, BARRY C P J, PERRY M D. Ultrahigh-intensity lasers: Physics of the extreme on a tabletop[J]. Physics Today, 1998, 51(1): 22-28. DOI: 10.1063/1.882131
|
[5] |
CORKUM P B, KRAUSZ F. Attosecond science[J]. Nature Physics, 2007, 3(6): 381-387. DOI: 10.1038/nphys620
|
[6] |
KRAUSZ F, IVANOV M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234. DOI: 10.1103/RevModPhys.81.163
|
[7] |
POGORELSKY I V, BEN-ZVI I, HIROSE T, et al. Demonstration of 8×1018 photons/second peaked at 1.8Å in a relativistic Thomson scattering experiment[J]. Physical Review Accelerators & Beams, 2000, 3(9): 090702.
|
[8] |
SAKAI I, AOKI T, DOBASHI K, et al. Production of high brightness γ rays through backscattering of laser photons on high-energy electrons[J]. Physical Review Accelerators & Beams, 2003, 6(9): 091001.
|
[9] |
YAN W Ch, FRUHLING C, GOLOVIN G, et al. High-order multiphoton Thomson scattering[J]. Nature Photonics, 2017, 11(8): 514-520. DOI: 10.1038/nphoton.2017.100
|
[10] |
KHRENNIKOV K, WENZ J, BUCK A, et al. Tunable all-optical quasimonochromatic thomson X-ray source in the nonlinear regime[J]. Physical Review Letters, 2015, 114(19): 195003. DOI: 10.1103/PhysRevLett.114.195003
|
[11] |
ZHUANG J W, YAN Y L, ZHOU X. Quasi-monochromatic spectral emission characteristics from electron collision with tightly focused laser pulses[J]. Laser Physics, 2021, 31(3): 035401. DOI: 10.1088/1555-6611/abe23b
|
[12] |
MIKHAILOVA Y M, PLATONENKO V T, RYKOVANOV S G. Generation of an attosecond X-ray pulse in a thin film irradiated by an ultrashort ultrarelativistic laser pulse[J]. Journal of Experimental & Theoretical Physics Letters, 2005, 81(11): 571-574.
|
[13] |
PHUOC K T, CORDE S, THAURY C, et al. All-optical Compton gamma-ray source[J]. Nature Photonics, 2012, 6: 308-311. DOI: 10.1038/nphoton.2012.82
|
[14] |
THOMLINSON W. Medical applications of synchrotron radiation[J]. Nuclear Instruments and Methods in Physics Research Section, 1992, A319(1-3): 295-304.
|
[15] |
LEE K, CHUNG S Y, PARK S H, et al. Effects of high-order fields of a tightly focused laser pulse on relativistic nonlinear Thomson scattered radiation by a relativistic electron[J]. Europhysics Letters, 2010, 89(6): 613-630.
|
[16] |
CHI Z, DU Y, HUANG W, et al. Linearly polarized X-ray fluorescence computed tomography based on a Thomson scattering light source: A Monte Carlo study[J]. Journal of Synchrotron Radiation, 2020, 27(3): 737-745. DOI: 10.1107/S1600577520003574
|
[17] |
BALTUSKA A, UDEM T, UIBERACKER M, et al. Attosecond control of electronic processes by intense light fields[J]. Nature, 2003, 421(6923): 611-615. DOI: 10.1038/nature01414
|
[18] |
LEE K, CHA Y H, SHIN M S, et al. Relativistic nonlinear Thomson scattering as attosecond X-ray source[J]. Physical Review, 2003, E67(2): 26502-26502.
|
[19] |
ZHENG J, SHENG Zh M, ZHANG J, et al. Study on the factors affecting the single electron nonlinear Thomson scattering[J]. Acta Physica Sinica, 2005, 54(3): 1018-1035(in Chinese). DOI: 10.7498/aps.54.1018
|
[20] |
LI K, LI L X, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laser pulses[J]. Optik, 2019, 183: 813-817. DOI: 10.1016/j.ijleo.2019.02.154
|
[21] |
WANG Y Q, WANG C L, LI K, et al. Spatial radiation features of Thomson scattering from electron in circularly polarized tightly focused laser beams[J]. Laser Physics Letters, 2021, 18(1): 015303. DOI: 10.1088/1612-202X/abd170
|
[22] |
HE F, YU W, LU P X, et al. Ponderomotive acceleration of electrons by a tightly focused intense laser beam. Physical Review, 2003, E68(4): 046407.
|
1. |
张容溢,田友伟. 圆偏振激光强度对电子辐射特性的影响. 光电子·激光. 2025(02): 193-199 .
![]() | |
2. |
和一凡,申雨婷,王文霄,田友伟. 激光脉冲初始相位对电子辐射的影响. 激光技术. 2023(01): 103-107 .
![]() | |
3. |
朱佳宇,高周景明,蒋凌峰,田友伟. 初始位置对电子运动轨迹和空间角辐射的影响. 激光技术. 2023(02): 220-224 .
![]() |