Citation: | ZHU Jiayu, GAO Zhoujingming, JIANG Lingfeng, TIAN Youwei. Influence of initial position on the trajectory and spatial angular radiation of electrons[J]. LASER TECHNOLOGY, 2023, 47(2): 220-224. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.010 |
[1] |
闫春燕, 张秋菊, 罗牧华. 激光与相对论电子束相互作用中阿秒X射线脉冲的产生. 物理学报, 2011, 60(3): 397-403. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201103063.htm
YAN Ch Y, ZHANG Q J, LUO M H. Generation ofattosecond X-ray pulse in the interaction between the pulses and the relativistic electrons. Acta Physica Sinica, 2011, 60(3): 397-403(in Ch-inese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201103063.htm
|
[2] |
卢孟春, 刘国跃. Petawatt激光与应用. 四川师范大学学报(自然科学版), 2002, 25(1): 81-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SCSD200201023.htm
LU M Ch, LIU G Y. Petawatt laser and its application. Journal of Sichuan Normal University (Natural Science Edition), 2002, 25(1): 81-83(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SCSD200201023.htm
|
[3] |
肖耀宗, 王子豪, 郅佳琳, 等. 通过控制激光脉冲振幅以获得准直高能电子束. 山东工业技术, 2018(13): 122. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201813113.htm
XIAO Y Z, WANG Z H, ZHI J L, et al. Collimated high-energy electron beam obtained by controlling the amplitude of the laser pulse. Shandong Industrial Technology, 2018(13): 122(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201813113.htm
|
[4] |
田友伟, 余玮, 陆培祥, 等. 紧聚焦的超短超强激光脉冲在真空中加速斜入射的相对论电子. 物理学报, 2005, 54(9): 4208-4212. DOI: 10.3321/j.issn:1000-3290.2005.09.045
TIAN Y W, YU W, LU P X, et al. Electron capture and violent acceleration by a tightly focused ultra-short ultra-intense laser pulse in vacuum. Acta Physica Sinica, 2005, 54(9): 4208-4212(in Ch-inese). DOI: 10.3321/j.issn:1000-3290.2005.09.045
|
[5] |
WANG Y Q, ZHOU Q Y, ZHUANG J W, et al. Vortex and symmetric radiation character of nonlinear Thomson scattering in Laguerre-Gaussian circularly polarized laser pulses. Optics Express, 2021, 29(14): 22636-22647. DOI: 10.1364/OE.426529
|
[6] |
WANG Y Q, WANG C L, LI K, et al. Analysis of spatial radiation and motion features of nonlinear Thomson scattering in circularly polarized laser pulses. Optical and Quantum Electronics, 2021, 53(5): 229. DOI: 10.1007/s11082-021-02870-7
|
[7] |
WANG Y Q, WANG C L, LI K, et al. Spatial radiation features of Thomson scattering from electron in circularly polarized tightly focused laserbeams. Laser Physics Letters, 2021, 18(1): 015303. DOI: 10.1088/1612-202X/abd170
|
[8] |
WANG Y Q, WANG C L, ZHOU Q Y, et al. Nonlinear Thomson scattering from a tightly focused circularly polarized laser with varied incident-pulse durations. Laser Physics, 2021, 31(1): 015301. DOI: 10.1088/1555-6611/abd3f7
|
[9] |
YU P H, LIN H N, GU Z Y, et al. Analysis of the beam waist on spatial emission characteristics from an electron driven by intense linearly polarized laser pulses. Laser Physics, 2020, 30(4): 045301. DOI: 10.1088/1555-6611/ab74d4
|
[10] |
CHEN Z J, QIN H, CHEN X, et al. Spatial radiation features of circularly polarized tightly focused laser beams colliding withelectrons. Laser Physics, 2021, 31(7): 075401. DOI: 10.1088/1555-6611/ac0046
|
[11] |
GLENSER S, REDMER R. X-ray Thomson scattering in high energy densityplasmas. Review of Modern Physics, 2009, 81(4): 1625-1663. DOI: 10.1103/RevModPhys.81.1625
|
[12] |
BOCA M, OPREA A. Thomson scattering in the high intensity regime. Physica Scripta, 2011, 83(5): 055404. DOI: 10.1088/0031-8949/83/05/055404
|
[13] |
BROWN W J, HARTEMANN F V. Three-dimensional time and frequency-domain theory of femtosecond X-ray pulse generation through Thomson scattering. Physical Review Special Topics-Accelerators and Beams, 2004, 7(6): 060703. DOI: 10.1103/PhysRevSTAB.7.060703
|
[14] |
SCHOELIEN R W, LEEMANS W, CHIN A, VOLFBEYN P, et al. Femtosecond X-ray pulses at 0.4 Å generated by 90° Thompson scattering: A tool for probing the structural dynamics of materials. Science, 1996, 274(5285): 236-238. DOI: 10.1126/science.274.5285.236
|
[15] |
WALLER I, HARTREE D R. On the intensity of totalscattering of X-rays. Proceedings of the Royal Society, 1929, A124(793): 119-142.
|
[16] |
LI K, LI L X, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laserpulses. Optik, 2019, 183(12): 813-817.
|
[17] |
ZHUANG J W, WANG Y Q, WANG C L, et al. Spectral shape of quasi-monochromatic radiation from electron colliding with tightly focused laserpulses. Laser Physics, 2021, 31(6): 0065403. DOI: 10.1088/1555-6611/abfa89
|
[18] |
ZHUANG J W, YAN Y L, ZHOU X, et al. Quasi-monochromatic spectral emission characteristics from electron collision with tightly focused laser pulses. Laser Physics, 2021, 31(3): 035401.
|
[19] |
严以律, 周希, 任山令, 等. 电子初始位置对高能电子空间辐射的影响. 激光技术, 2022, 46(4): 556-560. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.019
YAN Y L, ZHOU X, REN Sh L, et al. Influence of electron's initial position on spatial radiation of high-energyelectrons. Laser Technology, 2022, 46(4): 556-560(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.019
|
[20] |
郑君, 盛政明, 张杰, 等. 影响单电子非线性汤姆孙散射因素的研究. 物理学报, 2005, 54(3): 1018-1035. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200503005.htm
ZHENG J, SHENG Zh M, ZHANG J, et al. Study on the factors affecting the single electron nonlinear Thomsom scattering. Acta Physica Sinica, 2005, 54(3): 1018-1035(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200503005.htm
|
1. |
张容溢,田友伟. 圆偏振激光强度对电子辐射特性的影响. 光电子·激光. 2025(02): 193-199 .
![]() |