Advanced Search
ZHU Jiayu, GAO Zhoujingming, JIANG Lingfeng, TIAN Youwei. Influence of initial position on the trajectory and spatial angular radiation of electrons[J]. LASER TECHNOLOGY, 2023, 47(2): 220-224. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.010
Citation: ZHU Jiayu, GAO Zhoujingming, JIANG Lingfeng, TIAN Youwei. Influence of initial position on the trajectory and spatial angular radiation of electrons[J]. LASER TECHNOLOGY, 2023, 47(2): 220-224. DOI: 10.7510/jgjs.issn.1001-3806.2023.02.010

Influence of initial position on the trajectory and spatial angular radiation of electrons

More Information
  • Received Date: January 28, 2022
  • Revised Date: May 10, 2022
  • Published Date: March 24, 2023
  • For the sake of studying the initial position's influence of electrons on the trajectory and spatial angular radiation of high-energy electrons in circularly polarized laser pulses, the spatial motion equation of high-energy electrons was deduced theoretically on the basis of nonlinear Thomson scattering model, energy equation, Lagrange equation, and in combination with the assistance of MATLAB numerical simulation, the spatial motion trajectory diagram and spatial angular radiation simulation diagram of high-energy electrons made. The results show that, under the action of the transverse vortex force, the front trajectory of the electron in the whole space is in a tightly separated spiral shape, and the rear trajectory is composed of sparse circles with distant spatial spacing. With the right shift of the initial position of the electron, the value of the polar angle θ and azimuth ϕ has a decreasing trend when the spatial angular radiation reaches the maximum. Specifically, it becomes stable when z0=5λ0 and (θ, ϕ)=(23.5°, 175.5°). Therefore the change of the initial position of the electron in the laser pulse has a great influence on the trajectory and spatial angular radiation of the electron, which creates the groundwork for the subsequent research of the initial position's influence of the electron on the radiation characteristics of high-energy electrons.
  • [1]
    闫春燕, 张秋菊, 罗牧华. 激光与相对论电子束相互作用中阿秒X射线脉冲的产生. 物理学报, 2011, 60(3): 397-403. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201103063.htm

    YAN Ch Y, ZHANG Q J, LUO M H. Generation ofattosecond X-ray pulse in the interaction between the pulses and the relativistic electrons. Acta Physica Sinica, 2011, 60(3): 397-403(in Ch-inese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201103063.htm
    [2]
    卢孟春, 刘国跃. Petawatt激光与应用. 四川师范大学学报(自然科学版), 2002, 25(1): 81-83. https://www.cnki.com.cn/Article/CJFDTOTAL-SCSD200201023.htm

    LU M Ch, LIU G Y. Petawatt laser and its application. Journal of Sichuan Normal University (Natural Science Edition), 2002, 25(1): 81-83(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SCSD200201023.htm
    [3]
    肖耀宗, 王子豪, 郅佳琳, 等. 通过控制激光脉冲振幅以获得准直高能电子束. 山东工业技术, 2018(13): 122. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201813113.htm

    XIAO Y Z, WANG Z H, ZHI J L, et al. Collimated high-energy electron beam obtained by controlling the amplitude of the laser pulse. Shandong Industrial Technology, 2018(13): 122(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SDGJ201813113.htm
    [4]
    田友伟, 余玮, 陆培祥, 等. 紧聚焦的超短超强激光脉冲在真空中加速斜入射的相对论电子. 物理学报, 2005, 54(9): 4208-4212. DOI: 10.3321/j.issn:1000-3290.2005.09.045

    TIAN Y W, YU W, LU P X, et al. Electron capture and violent acceleration by a tightly focused ultra-short ultra-intense laser pulse in vacuum. Acta Physica Sinica, 2005, 54(9): 4208-4212(in Ch-inese). DOI: 10.3321/j.issn:1000-3290.2005.09.045
    [5]
    WANG Y Q, ZHOU Q Y, ZHUANG J W, et al. Vortex and symmetric radiation character of nonlinear Thomson scattering in Laguerre-Gaussian circularly polarized laser pulses. Optics Express, 2021, 29(14): 22636-22647. DOI: 10.1364/OE.426529
    [6]
    WANG Y Q, WANG C L, LI K, et al. Analysis of spatial radiation and motion features of nonlinear Thomson scattering in circularly polarized laser pulses. Optical and Quantum Electronics, 2021, 53(5): 229. DOI: 10.1007/s11082-021-02870-7
    [7]
    WANG Y Q, WANG C L, LI K, et al. Spatial radiation features of Thomson scattering from electron in circularly polarized tightly focused laserbeams. Laser Physics Letters, 2021, 18(1): 015303. DOI: 10.1088/1612-202X/abd170
    [8]
    WANG Y Q, WANG C L, ZHOU Q Y, et al. Nonlinear Thomson scattering from a tightly focused circularly polarized laser with varied incident-pulse durations. Laser Physics, 2021, 31(1): 015301. DOI: 10.1088/1555-6611/abd3f7
    [9]
    YU P H, LIN H N, GU Z Y, et al. Analysis of the beam waist on spatial emission characteristics from an electron driven by intense linearly polarized laser pulses. Laser Physics, 2020, 30(4): 045301. DOI: 10.1088/1555-6611/ab74d4
    [10]
    CHEN Z J, QIN H, CHEN X, et al. Spatial radiation features of circularly polarized tightly focused laser beams colliding withelectrons. Laser Physics, 2021, 31(7): 075401. DOI: 10.1088/1555-6611/ac0046
    [11]
    GLENSER S, REDMER R. X-ray Thomson scattering in high energy densityplasmas. Review of Modern Physics, 2009, 81(4): 1625-1663. DOI: 10.1103/RevModPhys.81.1625
    [12]
    BOCA M, OPREA A. Thomson scattering in the high intensity regime. Physica Scripta, 2011, 83(5): 055404. DOI: 10.1088/0031-8949/83/05/055404
    [13]
    BROWN W J, HARTEMANN F V. Three-dimensional time and frequency-domain theory of femtosecond X-ray pulse generation through Thomson scattering. Physical Review Special Topics-Accelerators and Beams, 2004, 7(6): 060703. DOI: 10.1103/PhysRevSTAB.7.060703
    [14]
    SCHOELIEN R W, LEEMANS W, CHIN A, VOLFBEYN P, et al. Femtosecond X-ray pulses at 0.4 Å generated by 90° Thompson scattering: A tool for probing the structural dynamics of materials. Science, 1996, 274(5285): 236-238. DOI: 10.1126/science.274.5285.236
    [15]
    WALLER I, HARTREE D R. On the intensity of totalscattering of X-rays. Proceedings of the Royal Society, 1929, A124(793): 119-142.
    [16]
    LI K, LI L X, SHU Q, et al. Spatial characteristics of motion and emission from electron driven by linearly polarized tightly focused laserpulses. Optik, 2019, 183(12): 813-817.
    [17]
    ZHUANG J W, WANG Y Q, WANG C L, et al. Spectral shape of quasi-monochromatic radiation from electron colliding with tightly focused laserpulses. Laser Physics, 2021, 31(6): 0065403. DOI: 10.1088/1555-6611/abfa89
    [18]
    ZHUANG J W, YAN Y L, ZHOU X, et al. Quasi-monochromatic spectral emission characteristics from electron collision with tightly focused laser pulses. Laser Physics, 2021, 31(3): 035401.
    [19]
    严以律, 周希, 任山令, 等. 电子初始位置对高能电子空间辐射的影响. 激光技术, 2022, 46(4): 556-560. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.019

    YAN Y L, ZHOU X, REN Sh L, et al. Influence of electron's initial position on spatial radiation of high-energyelectrons. Laser Technology, 2022, 46(4): 556-560(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.019
    [20]
    郑君, 盛政明, 张杰, 等. 影响单电子非线性汤姆孙散射因素的研究. 物理学报, 2005, 54(3): 1018-1035. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200503005.htm

    ZHENG J, SHENG Zh M, ZHANG J, et al. Study on the factors affecting the single electron nonlinear Thomsom scattering. Acta Physica Sinica, 2005, 54(3): 1018-1035(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB200503005.htm
  • Cited by

    Periodical cited type(1)

    1. 张容溢,田友伟. 圆偏振激光强度对电子辐射特性的影响. 光电子·激光. 2025(02): 193-199 .

    Other cited types(0)

Catalog

    Article views (5) PDF downloads (7) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return