Advanced Search
PANG Jiwei, WANG Chao, CAI Yukui. Research progress of laser processing technology for glass materials[J]. LASER TECHNOLOGY, 2021, 45(4): 417-428. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.003
Citation: PANG Jiwei, WANG Chao, CAI Yukui. Research progress of laser processing technology for glass materials[J]. LASER TECHNOLOGY, 2021, 45(4): 417-428. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.003

Research progress of laser processing technology for glass materials

More Information
  • Received Date: August 26, 2020
  • Revised Date: September 23, 2020
  • Published Date: July 24, 2021
  • Glass materials are widely used in semiconductor, micro-electromechanical system, microfluidic chip, optical communication, optical storage, and other emerging fields due to its excellent and unique physical and chemical properties. As a new non-contact machining method, laser technology can carry out high-precision and high-efficiency micro-machining on the surface and inside of glass materials, which shows great development potential in the field of glass material processing. In this paper, the basic principle and key problems of four typical laser machining glass processes: Laser etching, laser drilling, laser welding, and laser fabrication of functional structures were reviewed. And the latest research progress, technological level, and application status of laser processing of glass materials were pointed out. Laser etching includes laser direct-writing etching, laser-induced plasma-assisted ablation, and laser-induced backside wet etching; laser drilling includes far-infrared CO2 laser drilling, ultrafast laser drilling, and improved new drilling methods; laser welding includes far-infrared CO2 laser welding, nanosecond laser welding, and ultrafast laser welding; while laser fabrication of functional structures was divided into surface functional structures fabrication and internal functional structures fabrication. At the same time the advantages and disadvantages of four kinds of laser machining glass processes were summarized, and the bottleneck problems were analyzed. On this basis, the development prospect of laser processing technology for glass materials is summarized and prospected.
  • [1]
    RIHAKOVA L, CHMELICKOVA H. Laser micromachining of glass, silicon and ceramics. A review[J]. European International Journal of Science and Technology, 2015, 4(7): 41-49.
    [2]
    YANG G Sh, CHEN T, CHEN H. Crack-free silica glass surface micro-grooves etched by 248nm excimer lasers[J]. Chinese Journal of Lasers, 2017, 44(9): 0902004(in Chinese). DOI: 10.3788/CJL201744.0902004
    [3]
    LI Q S, LIANG T, LEI Ch, et al. 355nm all-solid-state ultraviolet laser direct writing and etching of micro-channels in borosilicate glass[J]. Chinese Journal of Lasers, 2018, 45(8): 0802003(in Chin-ese). DOI: 10.3788/CJL201845.0802003
    [4]
    YU H F, XU J, ZHANG A D, et al. Fabrication of embedded submicron metal lines on glass surfaces[J]. Chinese Journal of Lasers, 2020, 47(5): 0502009(in Chinese). DOI: 10.3788/CJL202047.0502009
    [5]
    WANG C. A study on laser etching and polishing quartz glasses technology[D]. Wuhan: Huazhong University of Science & Technology, 2012: 1-70(in Chinese).
    [6]
    HAMDANI A H, AHMED W, ANSAR A, et al. Parametric study of ablation depths for different optical glasses using high fluence laser induced plasma assisted ablation (LIPAA)[C]//Key Engineering Materials. Zurich, Switzerland: Trans Tech Publications Ltd., 2010, 442: 172-177.
    [7]
    RAHMAN T U, REHMAN Z U, ULLAH S, et al. Laser-induced plasma-assisted ablation (LIPAA) of glass: Effects of the laser fluence on plasma parameters and crater morphology[J]. Optics & Laser Technology, 2019, 120: 105768.
    [8]
    SARMA U, JOSHI S N. Two-dimensional numerical investigation on the effect of laser parameters on laser indirect machining of glass[C]//Advances in Mechanical Engineering: Select Proceedings of ICRIDME 2018. Singapore: Springer, 2020: 347-357.
    [9]
    EHRHARDT M, RACIUKAITIS G, GECYS P, et al. Microstructuring of fused silica by laser-induced backside wet etching using picosecond laser pulses[J]. Applied Surface Science, 2010, 256(23): 7222-7227. DOI: 10.1016/j.apsusc.2010.05.055
    [10]
    KWON K K, KIM H, KIM T, et al. High aspect ratio channel fabrication with near-infrared laser-induced backside wet etching[J]. Journal of Materials Processing Technology, 2020, 278: 116505. DOI: 10.1016/j.jmatprotec.2019.116505
    [11]
    SUN X, YU J, HU Y, et al. Study on ablation threshold of fused silica by liquid-assisted femtosecond laser processing[J]. Applied Optics, 2019, 58(33): 9027-9032. DOI: 10.1364/AO.58.009027
    [12]
    BRUSBERG L, QUEISSER M, GENTSCH C, et al. Advances in CO2-laser drilling of glass substrates[J]. Physics Procedia, 2012, 39: 548-555. DOI: 10.1016/j.phpro.2012.10.072
    [13]
    UNO K, YAMAMOTO T, WATANABE M, et al. SiO2-glass drilling by short-pulse CO2 laser with controllable pulse-tail energy[C]//Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) Ⅹ Ⅺ. San Francisco, USA: International Society for Optics and Photonics, 2016, 9735: 973519.
    [14]
    ARGUMENT M. Femtosecond micromachining of glass and semiconductor materials[C]//Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging. Ottawa, Canada: International Society for Optics and Photonics, 2017, 10313: 1031321.
    [15]
    CHUANG C F, CHEN K S. A new technique for creating curved interior holes on ultrathin glass based on picosecond laser drilling and thermo-shock separation[C]//2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP). New York, USA: IEEE, 2018: 1-5.
    [16]
    ITO Y, SHINOMOTO R, NAGATO K, et al. Mechanisms of da-mage formation in glass in the process of femtosecond laser drilling[J]. Applied Physics, 2018, A124(2): 181.
    [17]
    WEI J, ZHANG B, LIU H, et al. Time-resolved shadowgraphic i-maging of femtosecond laser ablated micro-holes in silica glass[J]. Chinese Journal of Lasers, 2019, 46(5): 0508020(in Chinese). DOI: 10.3788/CJL201946.0508020
    [18]
    KONO I, NAKANISHI A, WARISAWA S, et al. Study on non-crack laser machining of glass by using absorbent powder[C]//20th Annual Meeting of the American Society for Precision Engineering. Norfolk, USA: ASPE, 2005: 9-14.
    [19]
    ITO Y, YOSHIZAKI R, MIYAMOTO N, et al. Ultrafast and precision drilling of glass by selective absorption of fiber-laser pulse into femtosecond-laser-induced filament[J]. Applied Physics Letters, 2018, 113(6): 061101. DOI: 10.1063/1.5027421
    [20]
    WANG H Zh, GUO P F, WU Sh, et al. Bottom-up drilling of transparent materials[J]. Chinese Journal of Lasers, 2020, 47(3): 0302003(in Chinese). DOI: 10.3788/CJL202047.0302003
    [21]
    CVECEK K, DEHMEL S, MIYAMOTO I, et al. A review on glass welding by ultra-short laser pulses[J]. International Journal of Extreme Manufacturing, 2019, 1(4): 042001. DOI: 10.1088/2631-7990/ab55f6
    [22]
    POHL L, von WITZENDORFF P, SUTTMANN O, et al. Automated laser-based glass fusing with powder additive[C]//International Congress on Applications of Lasers & Electro-Optics. Orlando, USA: Laser Institute of America, 2014: 528-532.
    [23]
    POHL L, von WITZENDORFF P, CHATZIZYRLI E, et al. CO2 laser welding of glass: Numerical simulation and experimental study[J]. The International Journal of Advanced Manufacturing Techno-logy, 2017, 90(1/4): 397-403.
    [24]
    de PABLOS-MARTÍN A, HÖCHE T. Laser welding of glasses using a nanosecond pulsed Nd∶ YAG laser[J]. Optics and Lasers in Engineering, 2017, 90: 1-9.
    [25]
    ZHANG X, GUO L, ZHANG Q, et al. Investigation of the reaction mechanism and optical transparency in nanosecond laser welding of glasses assisted with titanium film[J]. Applied Optics, 2020, 59(4): 940-947. DOI: 10.1364/AO.378409
    [26]
    de PABLOS-MARTÍN A, BENNDORF G, TISMER S, et al. Laser-welded fused silica substrates using a luminescent fresnoite-based sealant[J]. Optics & Laser Technology, 2016, 80: 176-185.
    [27]
    SUN K, SUN Sh Zh, QIU J R. Recent research progress in ultrashort pulsed laser welding of non-metallic materials[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111411(in Chinese).
    [28]
    RICHTER S, DÖRING S, TVNNERMANN A, et al. Bonding of glass with femtosecond laser pulses at high repetition rates[J]. A-pplied Physics, 2011, A103(2): 257-261.
    [29]
    DING T, WANG X H, WANG G D, et al. Welding of fused silica by using high repetition frequency femtosecond laser[J]. Chinese Journal of Lasers, 2018, 45(7): 10701007(in Chinese).
    [30]
    RICHTER S, ZIMMERMANN F, SUTTER D, et al. Ultrashort pulse laser welding of glasses without optical contacting[C]//Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial A-pplications Ⅹ Ⅶ. Ottawa, Canada: International Society for Optics and Photonics, 2017, 10094: 1009411.
    [31]
    CHEN H, DENG L, DUAN J, et al. Picosecond laser welding of glasses with a large gap by a rapid oscillating scan[J]. Optics Le-tters, 2019, 44(10): 2570-2573. DOI: 10.1364/OL.44.002570
    [32]
    YU M, HUANG T, XIAO Sh R. Long focal length green femtose-cond laser welding of glass[J]. Chinese Journal of Lasers, 2020, 47(9): 0902005(in Chinese). DOI: 10.3788/CJL202047.0902005
    [33]
    CHEN J B. Principles of laser and its applications[M]. 4th ed. Beinjing: Publishing House of Electronics Industry, 2019: 1-333(in Chinese).
    [34]
    WATANABE W, LI Y, ITOH K. Ultrafast laser micro-processing of transparent material[J]. Optics & Laser Technology, 2016, 78: 52-61.
    [35]
    LIN Y. Exceptionally transparent superhydrophobic glass surfaces fabricated by ultrafast laser and their stability and durability[D]. Beijing: Tsinghua University, 2018: 1-80(in Chinese).
    [36]
    AHSAN M S, DEWANDA F, LEE M S, et al. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses[J]. Applied Surface Science, 2013, 265: 784-789. DOI: 10.1016/j.apsusc.2012.11.112
    [37]
    WANG B, HUA Y, YE Y, et al. Transparent superhydrophobic solar glass prepared by fabricating groove-shaped arrays on the surface[J]. Applied Surface Science, 2017, 426: 957-964. DOI: 10.1016/j.apsusc.2017.07.169
    [38]
    HOU T J, AI J, LIU J G, et al. Selective preparation of metal co-pper layer on silicate glass by laser surface modification[J]. Laser Technology, 2018, 42(2): 176-180(in Chinese).
    [39]
    REINHARDT H M, MAIER P, KIM H C, et al. Nanostructured transparent conductive electrodes for applications in harsh environments fabricated via nanosecond laser-induced periodic surface structures (LIPSS) in indium-tin oxide films on glass[J]. Advanced Materials Interfaces, 2019, 6(16): 1900401.
    [40]
    SHAIKH S, SINGH D, SUBRAMANIAN M, et al. Femtosecond laser induced surface modification for prevention of bacterial adhesion on 45S5 bioactive glass[J]. Journal of Non-Crystalline Solids, 2018, 482: 63-72. DOI: 10.1016/j.jnoncrysol.2017.12.019
    [41]
    VILLAP U ' N V M, QU B, LUND P A, et al. Optimizing the antimicrobial performance of metallic glass composites through surface texturing[J]. Materials Today Communications, 2020, 23: 101074. DOI: 10.1016/j.mtcomm.2020.101074
    [42]
    ZHANG G, CHENG G, BHUYAN M K, et al. Ultrashort Bessel beam photoinscription of Bragg grating waveguides and their application as temperature sensors[J]. Photonics Research, 2019, 7(7): 806-814. DOI: 10.1364/PRJ.7.000806
    [43]
    HUANG X, GUO Q, YANG D, et al. Reversible 3-D laser printing of perovskite quantum dots inside a transparent medium[J]. Nature Photonics, 2020, 14(2): 82-88. DOI: 10.1038/s41566-019-0538-8
    [44]
    LI Y, QU S. Femtosecond laser-induced breakdown in distilled water for fabricating the helical microchannels array[J]. Optics Le-tters, 2011, 36(21): 4236-4238. DOI: 10.1364/OL.36.004236
    [45]
    TAN Y, CHU W, WANG P, et al. Water-assisted laser drilling of high-aspect-ratio 3-D microchannels in glass with spatiotemporally focused femtosecond laser pulses[J]. Optical Materials Express, 2019, 9(4): 1971-1978. DOI: 10.1364/OME.9.001971
    [46]
    BROKMANN U, MILDE T, RÄDLEIN E, et al. Fabrication of 3-D microchannels for tissue engineering in photosensitive glass using NIR femtosecond laser radiation[J]. Biomedical Glasses, 2019, 5(1): 34-45. DOI: 10.1515/bglass-2019-0003
    [47]
    QI J, LI W, CHU W, et al. A microfluidic mixer of high throughput fabricated in glass using femtosecond laser micromachining combined with glass bonding[J]. Micromachines, 2020, 11(2): 213. DOI: 10.3390/mi11020213
  • Related Articles

    [1]LÜ Zishang, HU Jinhua, REN Danping, ZHAO Jijun. Research on temperature strain sensing characteristics of flat top CLPG-CFBG cascade structure[J]. LASER TECHNOLOGY, 2024, 48(1): 65-70. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.011
    [2]WANG Chengliang, YANG Qingsheng, LI Jun, ZHONG Weifeng, CHEN Zhiming. Fast demodulation method of optical fiber temperature and strain based on neural network[J]. LASER TECHNOLOGY, 2022, 46(2): 254-259. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.017
    [3]WANG Gao, ZHANG Meiju, HUANG Manguo, LIANG Xiaobo, LIU Zhichao. Research on load sensing system based on orthogonal fiber grating array[J]. LASER TECHNOLOGY, 2021, 45(2): 143-146. DOI: 10.7510/jgjs.issn.1001-3806.2021.02.003
    [4]LI Wenwen, LIU Shupeng, WANG Zhongyang. Fast super-resolution fluorescence microscopy by compressed sensing[J]. LASER TECHNOLOGY, 2020, 44(2): 196-201. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.010
    [5]YANG Zhengli, SHI Wen, CHEN Haixia. Adaptive compression sensing of optical fiber perimeter alarm signal[J]. LASER TECHNOLOGY, 2020, 44(1): 74-80. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.013
    [6]ZHANG Jian, HUA Yinqun, CAO Jiangdong. Simulation of propagation characteristics of stress wave in copper films with laser shock processing[J]. LASER TECHNOLOGY, 2016, 40(4): 601-605. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.030
    [7]ZHA Shengming, ZHU Zhijing, CHI Hao. Research of key issues of photonic-assisted compressive sensing technology[J]. LASER TECHNOLOGY, 2016, 40(4): 565-570. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.023
    [8]JING Ning, WANG Zhi-bin, ZHANG Ji-long, CHEN Yuan-yuan. 弹光调制非线性光程差干涉信号的快速反演[J]. LASER TECHNOLOGY, 2012, 36(2): 268-270,288. DOI: 10.3969/j.issn.1001-3806.2012.02.033
    [9]LIN Rui, LIU Qi-neng, ZHANG Cui-ling. A new fast algorithm for gyrator transform[J]. LASER TECHNOLOGY, 2012, 36(1): 50-53. DOI: 10.3969/j.issn.1001-3806.2012.01.014
    [10]Jiang Lingzhen, Liu Haijiang, Li Chenjiang, Zou Lixun, Geng Wanzhen. Study of transverse strain near tip of crack type Ⅰ using holographic interferometry[J]. LASER TECHNOLOGY, 1994, 18(2): 106-109.
  • Cited by

    Periodical cited type(3)

    1. 甘楚立,龙佳乐,丁毅,胡轶,詹晓江,黄克森,张建民. 基于希尔伯特-黄变换的单次离轴全息零频分量抑制. 光学技术. 2022(04): 391-397 .
    2. 宋洁睿,孙蕾,吴玥,袁子怡,董昊,孔勇. 利用液晶波片去除零级像的数字全息成像研究. 智能计算机与应用. 2020(06): 158-161+163 .
    3. 赵亮,刘海,徐世昌,王剑年. HHT和CWT用于光纤振动信号分析的对比研究. 激光技术. 2017(02): 260-264 . 本站查看

    Other cited types(2)

Catalog

    Article views (18) PDF downloads (23) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return