Citation: | AI Liefu, CHENG Hongjun, FENG Xuejun. Projection-based enhanced residual quantization for approximate nearest neighbor search[J]. LASER TECHNOLOGY, 2020, 44(6): 742-748. DOI: 10.7510/jgjs.issn.1001-3806.2020.06.017 |
[1] |
AI L, YU J, HE Y, et al. High-dimensional indexing technologies for large scale content-based image retrieval: A review [J]. Journal of Zhejiang University(Svirnvr C), 2013, 14(7): 505-520.
|
[2] |
LIU D Y, WANG G J, WU J, et al. Light field image compression method based on correlation of rendered views [J]. Laser Technology, 2019, 43(4): 551-556 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201904020.htm
|
[3] |
WU Z, YU J. Vector quantization: A review [J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(4):507-524. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000000769775
|
[4] |
HERVE J, MATTHIJS D, CORDELIA S. Product quantization for nearest neighbor search [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(1): 117-128. DOI: 10.1109/TPAMI.2010.57
|
[5] |
MATSUI Y, UCHIDA Y, HERVE J. A survey of product quantization [J]. ITE Transactions on Media Technology and Applications, 2018, 6(1):2-10. DOI: 10.3169/mta.6.2
|
[6] |
GE T, HE K, KE Q, et al. Optimized product quantization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4):744-755. DOI: 10.1109/TPAMI.2013.240
|
[7] |
KALANTIDIS Y, AVRITHIS Y. Locally optimized product quantization for approximate nearest neighbor search[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2014: 1213-1220.
|
[8] |
HEO J, LIN Z, YOON S. Distance encoded product quantization[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2014: 1241-1248.
|
[9] |
NOROUZI M, FLEET D. Cartesian k-means[C]// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2013: 3017-3024.
|
[10] |
BABENKO A, LEMPITSKY V. Improving bilayer product quantization for billion-scale approximate nearest neighbors in high dimensions [EB/OL].[2019-10-10].https: //arxiv.org/abs/1404.1831.
|
[11] |
KALANTIDIS Y, AVRITHIS Y. Locally optimized product quantization for approximate nearest neighbor search[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2014: 2329-2336.
|
[12] |
JOHNSON J, DOUZE M, HERVE J. Billion-scale similarity search with gpus [J/OL].[2019-11-20].https: //ieeexplore.ieee.org/document/8733051.
|
[13] |
MATSUI Y, OGAKI K, YAMASAKI T, et al. PQ k-means: Billionscale clustering for product-quantized code[C]// ACM Conference on Multimedia (MM). California, USA: ACM, 2017: 1-9.
|
[14] |
JONATHAN B. Transform coding for fast approximate nearest neighbor search in high dimensions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2010: 1815-1822.
|
[15] |
OZAN E, KIRANYAZ A, GABBOUJ M. K-subspaces quantization for approximate nearest neighbor search [J]. IEEE TKDE, 2016, 28(7): 1722-1733. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b661345ef1b8cac7b3b6334892b2f77
|
[16] |
BABENKO A, LEMPITSKY V. Tree quantization for large-scale similarity search and classification[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York, USA: IEEE, 2015: 4240-4248.
|
[17] |
CHEN Y, GUAN T, WANG C. Approximate nearest neighbor search by residual vector quantization[J]. Sensors, 2010, 10(12): 11259-11273. DOI: 10.3390/s101211259
|
[18] |
WANG J, ZHANG T. Composite quantization [J]. IEEE Transactions on PAMI, 2019. 41(6): 1308-1322. http://ieeexplore.ieee.org/document/8357922
|
[19] |
AI L, YU J, WU Z, et al. Optimized residual vector quantization for efficient approximate nearest neighbor search [J]. Multimedia Systems, 2017, 23(2): 169-181.
|
[20] |
LIU S, SHAO J, LU H. Generalized residual vector quantization and aggregating tree for large scale search [J]. IEEE Transactions on Multimedia, 2017, 19(8): 1785-1797. DOI: 10.1109/TMM.2017.2692181
|
[21] |
WEI B, GUAN T, YU J. Projected residual vector quantization for ANN search [J]. IEEE Multimedia, 2014, 21(3):41-51. DOI: 10.1109/MMUL.2013.65
|
[22] |
AI L F, LIU K, WU J. Enhanced residual vector quantization-based non-exhaustive retrieval for image visual features [J]. Journal of Hefei University, 2016, 26(1): 46-51(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hfxyxb-zrkxb201601009
|
[23] |
GUAN T, HE Y, GAO J, et al. On-device mobile visual location recognition by integrating vision and inertial sensors [J]. IEEE Transactions on Multimedia, 2013, 15(7):1688-1699. DOI: 10.1109/TMM.2013.2265674
|
1. |
叶婉丽,郭泓希. 三维激光扫描图像快速实时匹配方法改进研究. 激光杂志. 2023(02): 108-112 .
![]() | |
2. |
艾列富,程宏俊,陶勇,于俊清,郑馨,刘德阳. 面向近似最近邻搜索的码字扩展增强型残差量化. 计算机辅助设计与图形学学报. 2022(03): 459-469 .
![]() |