Citation: | XU Qiang, XIE Xiumin, ZHANG Wei, YUAN Fei, HU Weiying, DENG Jie, ZHAO Xinhua, SONG Haizhi. The progress of semiconductor quantum dot based quantum emitter[J]. LASER TECHNOLOGY, 2020, 44(5): 575-586. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.009 |
[1] |
NIELSEN M A, CHUANG I, GROVER L K. Quantum computation and quantum information[J]. American Journal of Physics, 2002, 70(5): 558-559.
|
[2] |
BEVERATOS A, BROURI R, GACOIN T, et al. Single photon quantum cryptography[J]. Physical Review Letters, 2002, 89(18): 187901.
|
[3] |
CHEUNG J Y, CHUNNILALL C J, WOOLLIAMS E R, et al. The quantum candela: A re-definition of the standard units for optical radiation[J]. Journal of Modern Optics, 2007, 54(2/3): 373-396.
|
[4] |
KOK P, MUNRO W J, NEMOTO K, et al. Linear optical quantum computing with photonic qubits[J]. Reviews of Modern Physics, 2007, 79(1): 135-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21c3f3662caa6d42b79a2934d6eb90bf
|
[5] |
ASPURU-GUZIK A, WALTHER P. Photonic quantum simulators[J]. Nature Physics, 2012, 8(4): 285-291.
|
[6] |
O'BRIEN J L, FURUSAWA A, VUČKOVIC' J. Photonic quantum technologies[J]. Nature Photonics, 2009, 3(12): 687-695.
|
[7] |
AHARONOVICH I, ENGLUND D, TOTH M. Solid-state single-photon emitters[J]. Nature Photonics, 2016, 10(10): 631-641.
|
[8] |
LODAHL P, MAHMOODIAN S, STOBBE S. Interfacing single photons and single quantum dots with photonic nanostructures[J]. Reviews of Modern Physics, 2015, 87(2): 347-400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=820bf34b7d7df54ac9c6c9552e316324
|
[9] |
ATATVRE M, ENGLUND D, VAMIVAKAS N, et al. Material platforms for spin-based photonic quantum technologies[J]. Nature Reviews Materials, 2018, 3(5): 38-51.
|
[10] |
AKOPIAN N, LINDNER N H, POEM E, et al. Entangled photon pairs from semiconductor quantum dots[J]. Physical Review Letters, 2006, 96(13): 130501.
|
[11] |
YOUNG R J, STEVENSON R M, ATKINSON P, et al. Improved fidelity of triggered entangled photons from single quantum dots[J]. New Journal of Physics, 2006, 8(2): 29-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001205335
|
[12] |
HAFENBRAK R, ULRICH S M, MICHLER P, et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30K[J]. New Journal of Physics, 2007, 9(9): 315-331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000002532397
|
[13] |
CHUNNILALL C J, DEGIOVANNI I P, KVCK S, et al. Metrology of single-photon sources and detectors: A review[J]. Optical Engineering, 2014, 53(8): 081910.
|
[14] |
de GREVE K, YU L, MCMAHON P L, et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength[J]. Nature, 2012, 491(7424): 421-425. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=00b4ddeda71e13a85dcb08cd6fabb327
|
[15] |
GAO W B, FALLAHI P, TOGAN E, et al. Observation of entanglement between a quantum dot spin and a single photon[J]. Nature, 2012, 491(7424): 426-430. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e3bd0d3b3b155c2d7be33ccac06cc2ce
|
[16] |
SCHAIBLEY J R, BURGERS A P, McCRACKEN G A, et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon[J]. Physical Review Letters, 2013, 110(16): 167401. http://www.ncbi.nlm.nih.gov/pubmed/23679636
|
[17] |
TAKEMOTO K, NAMBU Y, MIYAZAWA T, et al. Quantum key distribution over 120km using ultrahigh purity single-photon source and superconducting single-photon detectors[J]. Scientific Reports, 2015, 5: 14383.
|
[18] |
HE Y, HE Y M, WEI Y J, et al. Quantum state transfer from a single photon to a distant quantum-dot electron spin[J]. Physical Review Letters, 2017, 119(6): 060501. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cb77e22506996f0308df5a3234c5883c
|
[19] |
VARNAVA C, STEVENSON R M, NILSSON J, et al. An entangled-LED-driven quantum relay over 1km[J]. NPJ Quantum Information, 2016, 2: 16006. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001231595
|
[20] |
SENELLART P, SOLOMON G, WHITE A. High-performance semiconductor quantum-dot single-photon sources[J]. Nature Nanotechnology, 2017, 12(11): 1026-1039. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c72879ab85d4f97097b67b78894f7b2f
|
[21] |
LODAHL P. Quantum-dot based photonic quantum networks[J]. Quantum Science and Technology, 2017, 3(1): 013001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9373074
|
[22] |
HUBER D, REINDL M, ABERL J, et al. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: A review[J]. Journal of Optics, 2018, 20(7): 073002.
|
[23] |
BENSON O, SANTORI C, PELTON M, et al. Regulated and entangled photons from a single quantum dot[J]. Physical Review Letters, 2000, 84(11): 2513-2516. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e7f213c0826e2cb4a18a517d686ebbc1
|
[24] |
GÉRARD J M, SERMAGE B, GAYRAL B, et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity[J]. Physical Review Letters, 1998, 81(5): 1110-1113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0e0ece8330142267478399913aa5dd22
|
[25] |
LODAHL P, van DRIEL A F, NIKOLAEV I S, et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals[J]. Nature, 2004, 430(7000): 654-657.
|
[26] |
ENGLUND D, FATTAL D, WAKS E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal[J]. Physical Review Letters, 2005, 95(1): 013904.
|
[27] |
GRANGE T, HORNECKER G, HUNGER D, et al. Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters[J]. Physical Review Letters, 2015, 114(19): 193601.
|
[28] |
SAPIENZA L, DAVANO M, BADOLATO A, et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission[J]. Nature Communications, 2015, 6: 8833. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bcbfba09ece4a1b8d12efc987e585a1
|
[29] |
TOMAŠ M S, LENAC Z. Spontaneous-emission spectrum in an absorbing Fabry-Perot cavity[J]. Physical Review, 1999, A60(3): 2431-2437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1821d8158598427f044e7618908feea
|
[30] |
CHOY J T, HAUSMANN B J M, BABINEC T M, et al. Enhanced single-photon emission from a diamond-silver aperture[J]. Nature Photonics, 2011, 5(12): 738-743.
|
[31] |
BARNES W L, BJÖRK G, GÉRARD J M, et al. Solid-state single photon sources: Light collection strategies[J]. The European Physical Journal, 2002, D18(2): 197-210.
|
[32] |
SOMASCHI N, GIESZ V, de SANTIS L, et al. Near-optimal single-photon sources in the solid state[J]. Nature Photonics, 2016, 10(5): 340-345. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=136cac6fa72c8e347ab2dab7e27b8c48
|
[33] |
LOREDO J C, BROOME M A, HILAIRE P, et al. Boson sampling with single-photon fock states from a bright solid-state source[J]. Physical Review Letters, 2017, 118(13): 130503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=157336f97bd551f576d7351fe62e0322
|
[34] |
LIAO S K, YONG H L, LIU C, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication[J]. Nature Photonics, 2017, 11(8): 509-513. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0eddd1a2c46d7de61b398629852dd8fc
|
[35] |
MERMILLOD Q, JAKUBCZYK T, DELMONTE V, et al. Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas[J]. Physical Review Letters, 2016, 116(16): 163903. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a5e7ae716e135166ddd96139df7992ec
|
[36] |
DING X, HE Y, DUAN Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar[J]. Physical Review Letters, 2016, 116(2): 020401.
|
[37] |
MIYAZAWA T, TAKEMOTO K, SAKUMA Y, et al. Single-photon generation in the 1.55μm optical-fiber band from an InAs/InP quantum dot[J]. Japanese Journal of Applied Physics, 2005, 44(5L): L620-L622. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d83261fb89be7e079df096f135dc1fb9
|
[38] |
SONG H Z, TAKEMOTO K, MIYAZAWA T, et al. Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55μm from InAs/InP quantum dots[J]. Optics Letters, 2013, 38(17): 3241-3244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d16b33aa688b36c031ed1d4f79b188f
|
[39] |
SONG H Zh, TAKEMOTO K, MIYAZAWA T, et al. High quality-factor Si/SiO2-InP hybrid micropillar cavities with submicrometer diameter for 1.55μm telecommunication band[J]. Optics Express, 2015, 23(12): 16264-16272.
|
[40] |
SONG H Z, HADI M, ZHENG Y, et al. InGaAsP/InP nanocavity for single-photon source at 1.55μm telecommunication band[J]. Nanoscale Research Letters, 2017, 12(1): 128-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=D01492008
|
[41] |
KIM J H, CAI T, RICHARDSON C J K, et al. Two-photon interference from a bright single-photon source at telecom wavelengths[J]. Optica, 2016, 3(6): 577-584. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001194614
|
[42] |
BIROWOSUTO M D, SUMIKURA H, MATSUO S, et al. Fast Purcell-enhanced single photon source in 1550nm telecom band from a resonant quantum dot-cavity coupling[J]. Scientific Reports, 2012, 2: 321-326.
|
[43] |
ARCARI M, SÖLLNER I, JAVADI A, et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide[J]. Physical Review Letters, 2014, 113(9): 093603.
|
[44] |
THYRRESTRUP H, KIRŠANSKÉ G, le JEANNIC H, et al. Quantum optics with near-lifetime-limited quantum-dot transitions in a nanophotonic waveguide[J]. Nano Letters, 2018, 18(3): 1801-1806. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=76249b0bbdf1caafe5f5c850b15aaff2
|
[45] |
RALPH T C, SÖLLNER I, MAHMOODIAN S, et al. Photon sorting, efficient Bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity[J]. Physical Review Letters, 2015, 114(17): 173603. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ed556be9d2de5ca31efabc73de41326
|
[46] |
OZEL T, NIZAMOGLU S, SEFUNC M A, et al. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots[J]. ACS Nano, 2011, 5(2): 1328-1334.
|
[47] |
BELACEL C, HABERT B, BIGOURDAN F, et al. Controlling spontaneous emission with plasmonic optical patch antennas[J]. Nano Letters, 2013, 13(4): 1516-1521.
|
[48] |
ZHUKOVSKY S V, OZEL T, MUTLUGUN E, et al. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites[J]. Optics Express, 2014, 22(15): 18290-18298.
|
[49] |
CONANT R T, DRIJBER R A, HADDIX M L, et al. Sensitivity of organic matter decomposition to warming varies with its quality[J]. Global Change Biology, 2008, 14(4): 868-877. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1365-2486.2008.01541.x
|
[50] |
LI L, WANG W, LUK T S, et al. Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures[J]. ACS Photonics, 2017, 4(3): 501-508.
|
[51] |
KOZAI T D Y, LANGHALS N B, PATEL P R, et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces[J]. Nature Materials, 2012, 11(12): 1065-1073. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f508bb9af761cbcd0175a9d3f39c36ff
|
[52] |
BORETTI A, ROSA L, MACKIE A, et al. Electrically driven quantum light sources[J]. Advanced Optical Materials, 2015, 3(8): 1012-1033. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/adom.201500022
|
[53] |
KUHLMANN A V, PRECHTEL J H, HOUEL J, et al. Transform-limited single photons from a single quantum dot[J]. Nature Communications, 2015, 6: 82041-1-8.
|
[54] |
KIRŠANSKÉ G, THYRRESTRUP H, DAVEAU R S, et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide[J]. Physical Review, 2017, B96(16): 165306. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c25eb7abb1947b92c119d934f2c1398
|
[55] |
MICHLER P, IMAMOǦLU A, MASON M D, et al. Quantum correlation among photons from a single quantum dot at room temperature[J]. Nature, 2000, 406(6799): 968-970.
|
[56] |
REITHMAIER G, LICHTMANNECKER S, REICHERT T, et al. On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors[J]. Scientific Reports, 2013, 3: 1901-1906.
|
[57] |
LIN X, DAI X, PU C, et al. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature[J]. Nature Communications, 2017, 8: 1132.
|
[58] |
FENG S W, CHENG C Y, WEI C Y, et al. Purification of single photons from room-temperature quantum dots[J]. Physical Review Letters, 2017, 119(14): 143601. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2271c70a1ffa1664d602b8273c001258
|
[59] |
LOHRMANN A, IWAMOTO N, BODROG Z, et al. Single-photon emitting diode in silicon carbide[J]. Nature Communications, 2015, 6: 7783. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85eb7f8c0e96861f11b6fd3574deb7e1
|
[60] |
AVSAR A, TAN J Y, LUO X, et al. van der Waals bonded Co/h-BN contacts to ultrathin black phosphorus devices. Nano Letters, 2017, 17(9): 5361-5367. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9de200d93dba455ffc15b3d2250ffe1c
|
[61] |
GOLD P, THOMA A, MAIER S, et al. Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths[J]. Physical Review, 2014, B89(3): 035313. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=421ce8145eda3ce57f4940f20f8dbd62
|
[62] |
REINDL M, JONS K D, HUBER D, et al. Phonon-assisted two-photon interference from remote quantum emitters[J]. Nano Letters, 2017, 17(7): 4090-4095. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d53c7d8e31b0c0c8ad29f37bfd58a3e2
|
[63] |
DELTEIL A, SUN Z, FÄLT S, et al. Realization of a cascaded quantum system: Heralded absorption of a single photon qubit by a single-electron charged quantum dot[J]. Physical Review Letters, 2017, 118(17): 177401.
|
[64] |
DING F, SINGH R, PLUMHOF J D, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress[J]. Physical Review Le-tters, 2010, 104(6): 067405. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d25e58fa12531abd5dd35676277b2560
|
[65] |
ZOPF M, MACHA T, KEIL R, et al. Frequency feedback for two-photon interference from separate quantum dots[J]. Physical Review, 2018, B98(16): 161302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d87a123995497141db05c13c93b2d8af
|
[66] |
DENG Y H, WANG H, DING X, et al. Quantum interference between light sources separated by 150 million kilometers[J]. Physical Review Letters, 2019, 123(8): 080401.
|
[67] |
ZHANG R, GARNER S R, HAU L V. Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates[J]. Physical Review Letters, 2009, 103(23): 233602.
|
[68] |
SPECHT H P, NÖLLEKE C, REISERER A, et al. A single-atom quantum memory[J]. Nature, 2011, 473(7346): 190-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=de684c732a41fc3e731d0c522d034505
|
[69] |
SHIELDS A J. Semiconductor quantum light sources[J]. Nature Photonics, 2007, 1: 215-223.
|
[70] |
HUANG H, TROTTA R, HUO Y, et al. Electrically-pumped wavelength-tunable GaAs quantum dots interfaced with rubidium atoms[J]. ACS Photonics, 2017, 4(4): 868-872.
|
[71] |
ORIEUX A, VERSTEEGH M A M, JÖNS K D, et al. Semiconductor devices for entangled photon pair generation: A review[J]. Reports on Progress in Physics, 2017, 80(7): 076001.
|
[72] |
GONG M, ZHANG W, GUO G C, et al. Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress[J]. Physical Review Letters, 2011, 106(22): 227401.
|
[73] |
RASTELLI A, DING F, PLUMHOF J D, et al. Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators[J]. Physica Status Solidi (b), 2012, 249(4): 687-696. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ca0d22ecc1ac47899f03a464a71a7a9
|
[74] |
GERARDOT B D, SEIDL S, DALGARNO P A, et al. Manipulating exciton fine structure in quantum dots with a lateral electric field[J]. Applied Physics Letters, 2007, 90(4): 041101.
|
[75] |
BENNETT A J, POOLEY M A, STEVENSON R M, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot[J]. Nature Physics, 2010, 6(12): 947-951.
|
[76] |
HUDSON A J, STEVENSON R M, BENNETT A J, et al. Coherence of an entangled exciton-photon state[J]. Physical Review Le-tters, 2007, 99(26): 266802.
|
[77] |
SAPIENZA L, MALEIN R N E, KUKLEWICZ C E, et al. Exciton fine-structure splitting of telecom-wavelength single quantum dots: Statistics and external strain tuning[J]. Physical Review, 2013, B88(15): 155330.
|
[78] |
PATEL R B, BENNETT A J, FARRER I, et al. Two-photon interference of the emission from electrically tunable remote quantum dots[J]. Nature Photonics, 2010, 4(9): 632-635.
|
[79] |
DELTEIL A, SUN Z, GAO W, et al. Generation of heralded entanglement between distant hole spins[J]. Nature Physics, 2016, 12(3): 218-233.
|
[80] |
HÖFER B, OLBRICH F, KETTLER J, et al. Tuning emission energy and fine structure splitting in quantum dots emitting in the telecom O-band[J]. AIP Advances, 2019, 9(8): 085112.
|
[81] |
TROTTA R, ZALLO E, ORTIX C, et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry[J]. Physical Review Letters, 2012, 109(14): 147401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=947aae310d3185032c8ca18751043bc1
|
[82] |
LIU Z K, YANG L X, WU S C, et al. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln= Lu, Y)[J]. Nature Communications, 2016, 7: 12924.
|
[83] |
SALTER C L, STEVENSON R M, FARRER I, et al. An entangled-light-emitting diode[J]. Nature, 2010, 465(7298): 594-597. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ad006c9b556fd43f8d3375b7c0cf5af7
|
[84] |
CHUNG T H, JUSKA G, MORONI S T, et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes[J]. Nature Photonics, 2016, 10(12): 782-787. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e4bccfea1b845203330ec6b4a1b987e0
|
[85] |
KEIL R, ZOPF M, CHEN Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions[J]. Nature Communications, 2017, 8: 15501.
|
[86] |
XIANG Z H, HUWER J, STEVENSON R M, et al. Long-term transmission of entangled photons from a single quantum dot over deployed fiber[J]. Scientific Reports, 2019, 9: 4111.
|
[87] |
JUSKA G, DIMASTRODONATO V, MERENI L O, et al. Towards quantum-dot arrays of entangled photon emitters[J]. Nature Photonics, 2013, 7(7): 527-531.
|
[88] |
MUSIAŁ A, GOLD P, ANDRZEJEWSKI J, et al. Toward weak confinement regime in epitaxial nanostructures: Interdependence of spatial character of quantum confinement and wave function extension in large and elongated quantum dots[J]. Physical Review, 2014, B90(4): 045430.
|
[89] |
WATANABE K, KOGUCHI N, GOTOH Y. Fabrication of GaAs quantum dots by modified droplet epitaxy[J]. Japanese Journal of Applied Physics, 2000, 39(2A): L79-L81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d6bcf060048ece0e794bcf42def84bcb
|
[90] |
WANG Z M, LIANG B L, SABLON K A, et al. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs (100)[J]. Applied Physics Letters, 2007, 90(11): 113120.
|
[91] |
HUO Y H, RASTELLI A, SCHMIDT O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate[J]. Applied Physics Letters, 2013, 102(15): 152105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=65441a8807fe161a59fd274c9acb5f4d
|
[92] |
HUO Y H, KŘÁPEK V, RASTELLI A, et al. Volume dependence of excitonic fine structure splitting in geometrically similar quantum dots[J]. Physical Review, 2014, B90(4): 041304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=170e9ccc7a970e17549c74c42708e4c5
|
[93] |
HUBER D, REINDL M, HUO Y, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots[J]. Nature Communications, 2017, 8: 15506. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001423163
|
[94] |
BASSO BASSET F, BIETTI S, REINDL M, et al. High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy[J]. Nano Letters, 2017, 18(1): 505-512. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d6bcf060048ece0e794bcf42def84bcb
|
[95] |
FURIS M, HTOON H, PETRUSKA M A, et al. Bright-exciton fine structure and anisotropic exchange in CdSe nanocrystal quantum dots[J]. Physical Review, 2006, B73(24): 241313.
|
[96] |
GIOVANNETTI V, LLOYD S, MACCONE L. Quantum-enhanced measurements: Beating the standard quantum limit[J]. Science, 2004, 306(5700): 1330-1336.
|
[97] |
HACKER B, WELTE S, REMPE G, et al. A photon-photon quantum gate based on a single atom in an optical resonator[J]. Nature, 2016, 536(7615): 193-196. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3dd298c333d6826c5887f3a21790fa9
|
[98] |
LEE J P, BENNETT A J, STEVENSON R M, et al. Multi-dimensional photonic states from a quantum dot[J]. Quantum Science and Technology, 2018, 3(2): 024008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9396955
|
[99] |
BENNETT A J, LEE J P, ELLIS D J P, et al. Cavity-enhanced coherent light scattering from a quantum dot[J]. Science Advances, 2016, 2(4): e1501256. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001312119
|
[100] |
MVLLER M, VURAL H, SCHNEIDER C, et al. Quantum-dot single-photon sources for entanglement enhanced interferometry[J]. Physical Review Letters, 2017, 118(25): 257402. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a05b9679fec72b11a769c7045c69c9b8
|
[101] |
PERNICE W H P, SCHUCK C, MINAEVA O, et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits[J]. Nature Communications, 2012, 3: 1325.
|
[102] |
CLAUDON J, BLEUSE J, MALIK N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire[J]. Nature Photonics, 2010, 4(3): 174-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43f633a3eaf9e45368f3826ddfa643bb
|
[103] |
GAO W B, FALLAHI P, TOGAN E, et al. Quantum teleportation from a propagating photon to a solid-state spin qubit[J]. Nature Communications, 2013, 4: 2744.
|
[104] |
GAZZANO O, de VASCONCELLOS S M, ARNOLD C, et al. Bright solid-state sources of indistinguishable single photons[J]. Nature Communications, 2013, 4: 1425. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e24d26595e83863061d6781859b14774
|
[105] |
DIAMANTI E, LO H K, QI B, et al. Practical challenges in quantum key distribution[J]. NPJ Uantum Information, 2016, 2: 16025.
|
[106] |
CHEN Y, ZHANG J, ZOPF M, et al. Wavelength-tunable entangled photons from silicon-integrated Ⅲ-Ⅴ quantum dots[J]. Nature Communications, 2016, 7: 10387.
|
[107] |
PRTLJAGA N, COLES R J, O'HARA J, et al. Monolithic integration of a quantum emitter with a compact on-chip beam-splitter[J]. Applied Physics Letters, 2014, 104(23): 231107.
|
[108] |
JÖNS K D, RENGSTL U, OSTER M, et al. Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources[J]. Journal of Physics, 2015, D48(8): 085101.
|
[109] |
MIDOLO L, HANSEN S L, ZHANG W, et al. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits[J]. Optics Express, 2017, 25(26): 33514.
|
[110] |
DAVANCO M, LIU J, SAPIENZA L, et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices[J]. Nature Communications, 2017, 8: 889. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001446068
|
[111] |
KIM J H, AGHAEIMEIBODI S, RICHARDSON C J K, et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip[J]. Nano Letters, 2017, 17(12): 7394-7400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=edfcdbe02f8911da52981ad644563166
|
[112] |
ELSHAARI A W, ZADEH I E, FOGNINI A, et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits[J]. Nature Communications, 2017, 8: 379. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001443516
|
[113] |
GSCHREY M, THOMA A, SCHNAUBER P, et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography[J]. Nature Communications, 2015, 6: 7662. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a7826c85c85bf7e50b97b39dcb7c3e06
|
[114] |
SANTORI C, FATTAL D, VUČKIVUC' J, et al. Indistinguishable photons from a single-photon device[J]. Nature, 2002, 419(6907): 594-597.
|
[115] |
KIM J H, RICHARDSON C J K, LEAVITT R P, et al. Two-photon interference from the far-field emission of chip-integrated cavity-coupled emitters[J]. Nano Letters, 2016, 16(11): 7061-7066. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6b012eff393bc4b1ae39418b212b09a6
|
[116] |
WU X, JIANG P, RAZINSKAS G, et al. On-chip single-plasmon nanocircuit driven by a self-assembled quantum dot[J]. Nano Letters, 2017, 17(7): 4291-4296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14443b6f103ff4f0b3ecfebfde3db669
|
[117] |
KEIL R, KAUFMANN T, KAUTEN T, et al. Hybrid waveguide-bulk multi-path interferometer with switchable amplitude and phase[J]. APL Photonics, 2016, 1(8): 081302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001349967
|
[118] |
ZADEH I E, ELSHAARI A W, JÖNS K D, et al. Deterministic integration of single photon sources in silicon based photonic circuits[J]. Nano Letters, 2016, 16(4): 2289-2294. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d768dd0d113d3cc9238788ee33b90c3c
|
[119] |
YUAN X, WEYHAUSEN-BRINKMANN F, MARTÍN-SÁNCHEZ J, et al. Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics[J]. Nature Communications, 2018, 9: 3058.
|
[120] |
LIN H, LIN C H, LAI W C, et al. Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities[J]. Physical Review, 2011, B84(20): 201301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a5d7faffba360e3b65272dbeb1d22101
|
[121] |
SILVERSTONE J W, BONNEAU D, O'BRIEN J L, et al. Silicon quantum photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 390-402.
|
[122] |
REITHMAIER G, KANIBER M, FLASSIG F, et al. On-chip generation, routing, and detection of resonance fluorescence[J]. Nano Letters, 2015, 15(8): 5208-5213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6729a8ca5ab02a5c3cc8ef2512b4918e
|
[123] |
CALIC M, JARLOV C, GALLO P, et al. Deterministic radiative coupling of two semiconductor quantum dots to the optical mode of a photonic crystal nanocavity[J]. Scientific Reports, 2017, 7: 4100.
|
[124] |
STRAUβ M, KAGANSKIY A, VOIGT R, et al. Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique[J]. Applied Physics Letters, 2017, 110(11): 111101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f99033bdade5be4693553323c74a9be
|
[125] |
JONS K D, ATKINSON P, MVLLER M, et al. Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots[J]. Nano Letters, 2012, 13(1): 126-130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2af770c826a2e06989fb5db37916c103
|
[126] |
DOUSSE A, LANCO L, SUFFCZYN'SKI J, et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography[J]. Physical Review Letters, 2008, 101(26): 267404.
|
[127] |
SCHNAUBER P, SCHALL J, BOUNOUAR S, et al. Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography[J]. Nano Letters, 2018, 18(4): 2336-2342. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5860659f2eed83b8b7eaeaebf0b8e92
|
[128] |
HALLETT D, FOSTER A P, HURST D L, et al. Electrical control of nonlinear quantum optics in a nano-photonic waveguide[J]. Optica, 2018, 5(5): 644-650.
|
[129] |
PYAYT A L, WILEY B, XIA Y, et al. Integration of photonic and silver nanowire plasmonic waveguides[J]. Nature Nanotechnology, 2008, 3(11): 660-665. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ed861de0e4720797800c8538654c1c4
|
[130] |
GUO X, QIU M, BAO J, et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits[J]. Nano Letters, 2009, 9(12): 4515-4519. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6e2a1a760fb418d842a759048a0740c3
|
[131] |
WEI H, WANG Z, TIAN X, et al. Cascaded logic gates in nanophotonic plasmon networks[J]. Nature Communications, 2011, 2: 387. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000002235413
|
[132] |
WEI H, XU H. Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits[J]. Nanophotonics, 2012, 1(2): 155-169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1515/nanoph-2012-0012
|
[133] |
CHANG D E, SØRENSEN A S, DEMLER E A, et al. A single-photon transistor using nanoscale surface plasmons[J]. Nature Physics, 2007, 3(11): 807-812. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c06b4e584c50dbb79ecfb06c6803bcc
|
[134] |
KUMAR S, HUCK A, ANDERSEN U L. Efficient coupling of a single diamond color center to propagating plasmonic gap modes[J]. Nano Letters, 2013, 13(3): 1221-1225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eee1469c908b5f2f44f49a241c28e813
|
[135] |
LI Q, WEI H, XU H. Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire[J]. Nano Letters, 2015, 15(12): 8181-8187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b6aec7fc3607d6a885dd202aa258437
|
[136] |
LI Q, PAN D, WEI H, et al. Plasmon-assisted selective and super-resolving excitation of individual quantum emitters on a metal nanowire[J]. Nano Letters, 2018, 18(3): 2009-2015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5f0ddc98f1c5b754ecbd01312d9abaa1
|
[137] |
SONG H Zh, USUKI T, HIROSE S, et al. Site-controlled photoluminescence at telecommunication wavelength from InAs/InP quantum dots[J]. Applied Physics Letters, 2005, 86(11): 113118.
|
[138] |
DALACU D, MNAYMNEH K, SAZONOVA V, et al. Deterministic emitter-cavity coupling using a single-site controlled quantum dot[J]. Physical Review, 2010, B82(3): 033301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4540bb294c239b68260ad7a21fb2a9fe
|
[139] |
DALACU D, MNAYMNEH K, LAPOINTE J, et al. Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires[J]. Nano Letters, 2012, 12(11): 5919-5923. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=227cc4d5f539bbe9919444e44bb74b36
|
[140] |
KEIL R, ZOPF M, CHEN Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions[J]. Nature Communications, 2017, 8: 15501.
|
[141] |
JÖNS K D, SCHWEICKERT L, VERSTEEGH M A M, et al. Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality[J]. Scientific Reports, 2017, 7: 1700.
|
[142] |
HUBER T, PREDOJEVIC A, KHOSHNEGAR M, et al. Polarization entangled photons from quantum dots embedded in nanowires[J]. Nano Letters, 2014, 14(12): 7107-7114.
|
[143] |
HAFFOUZ S, ZEUNER K D, DALACU D, et al. Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: The role of the photonic waveguide[J]. Nano Letters, 2018, 18(5): 3047-3052.
|
[144] |
UNOLD T, MUELLER K, LIENAU C, et al. Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction[J]. Physical Review Letters, 2005, 94(13): 137404.
|
[145] |
KASPRZAK J, PATTON B, SAVONA V, et al. Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging[J]. Nature Photonics, 2011, 5(1): 57-63.
|
[146] |
TEMNOV V V, WOGGON U. Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity[J]. Physical Review Letters, 2005, 95(24): 243602.
|
[147] |
BETZIG E, CHICHESTER R J. Single molecules observed by near-field scanning optical microscopy[J]. Science, 1993, 262(5138): 1422-1425.
|
[148] |
de ASSIS P L, YEO I, GLOPPE A, et al. Strain-gradient position mapping of semiconductor quantum dots[J]. Physical Review Letters, 2017, 118(11): 117401.
|
[149] |
SONG H Zh, USUKI T, NAKATA Y, et al. Formation of InAs/GaAs quantum dots from a subcritical InAs wetting layer: A reflection high-energy electron diffraction and theoretical study[J]. Physical Review, 2006, B73(11): 115327.
|
[150] |
LIU J, KONTHASINGHE K, DAVANÇO M, et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication[J]. Physical Review Applied, 2018, 9(6): 064019.
|
[151] |
KREINBERG S, PORTE X, SCHICKE D, et al. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels[J]. Nature Communications, 2019, 10: 1539.
|
[152] |
STOCK E, ALBERT F, HOPFMANN C, et al. On-chip quantum optics with quantum dot microcavities[J]. Advanced Materials, 2013, 25(5): 707-710. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d299c088c605aae5d202cda12dd837ab
|
[1] | LI Junhong, FENG Xianing, WEI Lianfu. Photon loss robustness of optical interferometer for quantum-enhanced phase precision measurements[J]. LASER TECHNOLOGY, 2025, 49(2): 159-165. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.001 |
[2] | LIU Xiyu, CUI Yuqing, LIU Jin, ZHAO Tianming. Review of quantum sources based on spontaneous parametric down-conversion[J]. LASER TECHNOLOGY, 2022, 46(1): 38-44. DOI: 10.7510/jgjs.issn.1001-3806.2022.01.002 |
[3] | LIU Yun, WU Min, ZHU Xiangbing, WANG Baohui, LI Fengyu, MA Wei, XU Huanyin. Design of a gigahertz picosecond pulse laser module based on domestic chips[J]. LASER TECHNOLOGY, 2020, 44(5): 643-646. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.020 |
[4] | HUANG Shuai, ZHANG Wei, XI Qi, ZHAO Xinhua, XIE Xiumin, XU Qiang, ZHOU Qiang, SONG Haizhi. Fabrication imperfection effect on Si/SiO2-InP micropillar cavities for 1.55μm single photon source[J]. LASER TECHNOLOGY, 2020, 44(5): 532-537. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.002 |
[5] | HOU Lihua, REN Xudong, ZHOU Wangfan, DAI Wenjie, XU Shidong, HUANG Jingjing. Change of surface integrity of Ti-6Al-4V titanium alloy by laser shock processing at middle and high temperatures[J]. LASER TECHNOLOGY, 2016, 40(2): 288-291. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.029 |
[6] | TAN Xuxiang, WANG Guanjun, WANG Zhibin. Opened suspended core fiber chip based on surface plasma resonance enhancement mechanism[J]. LASER TECHNOLOGY, 2016, 40(2): 209-212. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.012 |
[7] | WANG Ma-hua, ZHU Guang-ping, CUI Yi-ping, ZHANG Tong. Determination of the ring resonator’s parameters in integrated optics gyroscopes[J]. LASER TECHNOLOGY, 2010, 34(1): 26-29. DOI: 10.3969/j.issn.1001-3806.2010.01.008 |
[8] | HUANG Wei, ZHOU Zhao-fei, ZHANG Tao. Research of integrated optic-electronic sensor[J]. LASER TECHNOLOGY, 2004, 28(6): 595-597. |
[9] | LI Xiao-hui, YANG Ya-pei. Integrated collinear acousto-optic devices based on LiNbO3 waveguide[J]. LASER TECHNOLOGY, 2004, 28(4): 355-358. |
[10] | Lei Jianshe, Huang Zhaoming, Guo Zhenhua, Li Yousheng, Liu Binbo. A laser marker controlled by single chip microcomputer[J]. LASER TECHNOLOGY, 2001, 25(2): 140-143. |
1. |
魏硕,赵楠翔,李敏乐,胡以华. 结合改进DBSCAN和统计滤波的单光子去噪算法. 激光技术. 2021(05): 601-606 .
![]() | |
2. |
王武楠,王海龙,石岩,赵春柳,陈君,赵天琦,金尚忠. 量子纠缠源制备方法. 光通信技术. 2021(11): 45-52 .
![]() |