Advanced Search

ISSN1001-3806 CN51-1125/TN Map

Volume 44 Issue 5
Sep.  2020
Article Contents
Turn off MathJax

Citation:

The progress of semiconductor quantum dot based quantum emitter

  • Received Date: 2019-11-28
    Accepted Date: 2020-01-19
  • Quantum emitters serve as the building blocks of quantum network, connecting quantum computing, quantum communication and quantum metrology. Semiconductor quantum dots (QDs) are widely considered as the best candidate for quantum emitters. By a decade of effort, the controllability, purity, brightness, indistinguishability, and coherence of QD emitters are greatly improved so that they are much closer to the application level. In this paper, the scientific and technological development of quantum emitters based on QDs were reviewed. Firstly, QD-based single photon sources have achieved indistinguishability of near unity, high purity, and high extraction efficiency. Secondly, QD-based entangled photon emitters have achieved high bit rate, high entanglement fidelity by improvements such as eliminating fine structure splitting. Thirdly, remarkable development has been made towards on-chip integration of QD emitters into planar circuits and nano-photonic systems. It turns out that quantum emitters based on semiconductor QDs are greatly potential to be applied in quantum information processing systems in the near future.
  • 加载中
  • [1]

    NIELSEN M A, CHUANG I, GROVER L K. Quantum computation and quantum information[J]. American Journal of Physics, 2002, 70(5): 558-559.
    [2]

    BEVERATOS A, BROURI R, GACOIN T, et al. Single photon quantum cryptography[J]. Physical Review Letters, 2002, 89(18): 187901.
    [3]

    CHEUNG J Y, CHUNNILALL C J, WOOLLIAMS E R, et al. The quantum candela: A re-definition of the standard units for optical radiation[J]. Journal of Modern Optics, 2007, 54(2/3): 373-396.
    [4]

    KOK P, MUNRO W J, NEMOTO K, et al. Linear optical quantum computing with photonic qubits[J]. Reviews of Modern Physics, 2007, 79(1): 135-174.
    [5]

    ASPURU-GUZIK A, WALTHER P. Photonic quantum simulators[J]. Nature Physics, 2012, 8(4): 285-291.
    [6]

    O'BRIEN J L, FURUSAWA A, VUČKOVIC' J. Photonic quantum technologies[J]. Nature Photonics, 2009, 3(12): 687-695.
    [7]

    AHARONOVICH I, ENGLUND D, TOTH M. Solid-state single-photon emitters[J]. Nature Photonics, 2016, 10(10): 631-641.
    [8]

    LODAHL P, MAHMOODIAN S, STOBBE S. Interfacing single photons and single quantum dots with photonic nanostructures[J]. Reviews of Modern Physics, 2015, 87(2): 347-400.
    [9]

    ATATVRE M, ENGLUND D, VAMIVAKAS N, et al. Material platforms for spin-based photonic quantum technologies[J]. Nature Reviews Materials, 2018, 3(5): 38-51.
    [10]

    AKOPIAN N, LINDNER N H, POEM E, et al. Entangled photon pairs from semiconductor quantum dots[J]. Physical Review Letters, 2006, 96(13): 130501.
    [11]

    YOUNG R J, STEVENSON R M, ATKINSON P, et al. Improved fidelity of triggered entangled photons from single quantum dots[J]. New Journal of Physics, 2006, 8(2): 29-39.
    [12]

    HAFENBRAK R, ULRICH S M, MICHLER P, et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30K[J]. New Journal of Physics, 2007, 9(9): 315-331.
    [13]

    CHUNNILALL C J, DEGIOVANNI I P, KVCK S, et al. Metrology of single-photon sources and detectors: A review[J]. Optical Engineering, 2014, 53(8): 081910.
    [14]

    de GREVE K, YU L, MCMAHON P L, et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength[J]. Nature, 2012, 491(7424): 421-425.
    [15]

    GAO W B, FALLAHI P, TOGAN E, et al. Observation of entanglement between a quantum dot spin and a single photon[J]. Nature, 2012, 491(7424): 426-430.
    [16]

    SCHAIBLEY J R, BURGERS A P, McCRACKEN G A, et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon[J]. Physical Review Letters, 2013, 110(16): 167401.
    [17]

    TAKEMOTO K, NAMBU Y, MIYAZAWA T, et al. Quantum key distribution over 120km using ultrahigh purity single-photon source and superconducting single-photon detectors[J]. Scientific Reports, 2015, 5: 14383.
    [18]

    HE Y, HE Y M, WEI Y J, et al. Quantum state transfer from a single photon to a distant quantum-dot electron spin[J]. Physical Review Letters, 2017, 119(6): 060501.
    [19]

    VARNAVA C, STEVENSON R M, NILSSON J, et al. An entangled-LED-driven quantum relay over 1km[J]. NPJ Quantum Information, 2016, 2: 16006.
    [20]

    SENELLART P, SOLOMON G, WHITE A. High-performance semiconductor quantum-dot single-photon sources[J]. Nature Nanotechnology, 2017, 12(11): 1026-1039.
    [21]

    LODAHL P. Quantum-dot based photonic quantum networks[J]. Quantum Science and Technology, 2017, 3(1): 013001.
    [22]

    HUBER D, REINDL M, ABERL J, et al. Semiconductor quantum dots as an ideal source of polarization-entangled photon pairs on-demand: A review[J]. Journal of Optics, 2018, 20(7): 073002.
    [23]

    BENSON O, SANTORI C, PELTON M, et al. Regulated and entangled photons from a single quantum dot[J]. Physical Review Letters, 2000, 84(11): 2513-2516.
    [24]

    GÉRARD J M, SERMAGE B, GAYRAL B, et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity[J]. Physical Review Letters, 1998, 81(5): 1110-1113.
    [25]

    LODAHL P, van DRIEL A F, NIKOLAEV I S, et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals[J]. Nature, 2004, 430(7000): 654-657.
    [26]

    ENGLUND D, FATTAL D, WAKS E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal[J]. Physical Review Letters, 2005, 95(1): 013904.
    [27]

    GRANGE T, HORNECKER G, HUNGER D, et al. Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters[J]. Physical Review Letters, 2015, 114(19): 193601.
    [28]

    SAPIENZA L, DAVANO M, BADOLATO A, et al. Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission[J]. Nature Communications, 2015, 6: 8833.
    [29]

    TOMAŠ M S, LENAC Z. Spontaneous-emission spectrum in an absorbing Fabry-Perot cavity[J]. Physical Review, 1999, A60(3): 2431-2437.
    [30]

    CHOY J T, HAUSMANN B J M, BABINEC T M, et al. Enhanced single-photon emission from a diamond-silver aperture[J]. Nature Photonics, 2011, 5(12): 738-743.
    [31]

    BARNES W L, BJÖRK G, GÉRARD J M, et al. Solid-state single photon sources: Light collection strategies[J]. The European Physical Journal, 2002, D18(2): 197-210.
    [32]

    SOMASCHI N, GIESZ V, de SANTIS L, et al. Near-optimal single-photon sources in the solid state[J]. Nature Photonics, 2016, 10(5): 340-345.
    [33]

    LOREDO J C, BROOME M A, HILAIRE P, et al. Boson sampling with single-photon fock states from a bright solid-state source[J]. Physical Review Letters, 2017, 118(13): 130503.
    [34]

    LIAO S K, YONG H L, LIU C, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication[J]. Nature Photonics, 2017, 11(8): 509-513.
    [35]

    MERMILLOD Q, JAKUBCZYK T, DELMONTE V, et al. Harvesting, coupling, and control of single-exciton coherences in photonic waveguide antennas[J]. Physical Review Letters, 2016, 116(16): 163903.
    [36]

    DING X, HE Y, DUAN Z C, et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar[J]. Physical Review Letters, 2016, 116(2): 020401.
    [37]

    MIYAZAWA T, TAKEMOTO K, SAKUMA Y, et al. Single-photon generation in the 1.55μm optical-fiber band from an InAs/InP quantum dot[J]. Japanese Journal of Applied Physics, 2005, 44(5L): L620-L622.
    [38]

    SONG H Z, TAKEMOTO K, MIYAZAWA T, et al. Design of Si/SiO2 micropillar cavities for Purcell-enhanced single photon emission at 1.55μm from InAs/InP quantum dots[J]. Optics Letters, 2013, 38(17): 3241-3244.
    [39]

    SONG H Zh, TAKEMOTO K, MIYAZAWA T, et al. High quality-factor Si/SiO2-InP hybrid micropillar cavities with submicrometer diameter for 1.55μm telecommunication band[J]. Optics Express, 2015, 23(12): 16264-16272.
    [40]

    SONG H Z, HADI M, ZHENG Y, et al. InGaAsP/InP nanocavity for single-photon source at 1.55μm telecommunication band[J]. Nanoscale Research Letters, 2017, 12(1): 128-135.
    [41]

    KIM J H, CAI T, RICHARDSON C J K, et al. Two-photon interference from a bright single-photon source at telecom wavelengths[J]. Optica, 2016, 3(6): 577-584.
    [42]

    BIROWOSUTO M D, SUMIKURA H, MATSUO S, et al. Fast Purcell-enhanced single photon source in 1550nm telecom band from a resonant quantum dot-cavity coupling[J]. Scientific Reports, 2012, 2: 321-326.
    [43]

    ARCARI M, SÖLLNER I, JAVADI A, et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide[J]. Physical Review Letters, 2014, 113(9): 093603.
    [44]

    THYRRESTRUP H, KIRŠANSKÉ G, le JEANNIC H, et al. Quantum optics with near-lifetime-limited quantum-dot transitions in a nanophotonic waveguide[J]. Nano Letters, 2018, 18(3): 1801-1806.
    [45]

    RALPH T C, SÖLLNER I, MAHMOODIAN S, et al. Photon sorting, efficient Bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity[J]. Physical Review Letters, 2015, 114(17): 173603.
    [46]

    OZEL T, NIZAMOGLU S, SEFUNC M A, et al. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots[J]. ACS Nano, 2011, 5(2): 1328-1334.
    [47]

    BELACEL C, HABERT B, BIGOURDAN F, et al. Controlling spontaneous emission with plasmonic optical patch antennas[J]. Nano Letters, 2013, 13(4): 1516-1521.
    [48]

    ZHUKOVSKY S V, OZEL T, MUTLUGUN E, et al. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites[J]. Optics Express, 2014, 22(15): 18290-18298.
    [49]

    CONANT R T, DRIJBER R A, HADDIX M L, et al. Sensitivity of organic matter decomposition to warming varies with its quality[J]. Global Change Biology, 2008, 14(4): 868-877.
    [50]

    LI L, WANG W, LUK T S, et al. Enhanced quantum dot spontaneous emission with multilayer metamaterial nanostructures[J]. ACS Photonics, 2017, 4(3): 501-508.
    [51]

    KOZAI T D Y, LANGHALS N B, PATEL P R, et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces[J]. Nature Materials, 2012, 11(12): 1065-1073.
    [52]

    BORETTI A, ROSA L, MACKIE A, et al. Electrically driven quantum light sources[J]. Advanced Optical Materials, 2015, 3(8): 1012-1033.
    [53]

    KUHLMANN A V, PRECHTEL J H, HOUEL J, et al. Transform-limited single photons from a single quantum dot[J]. Nature Communications, 2015, 6: 82041-1-8.
    [54]

    KIRŠANSKÉ G, THYRRESTRUP H, DAVEAU R S, et al. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide[J]. Physical Review, 2017, B96(16): 165306.
    [55]

    MICHLER P, IMAMOǦLU A, MASON M D, et al. Quantum correlation among photons from a single quantum dot at room temperature[J]. Nature, 2000, 406(6799): 968-970.
    [56]

    REITHMAIER G, LICHTMANNECKER S, REICHERT T, et al. On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors[J]. Scientific Reports, 2013, 3: 1901-1906.
    [57]

    LIN X, DAI X, PU C, et al. Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature[J]. Nature Communications, 2017, 8: 1132.
    [58]

    FENG S W, CHENG C Y, WEI C Y, et al. Purification of single photons from room-temperature quantum dots[J]. Physical Review Letters, 2017, 119(14): 143601.
    [59]

    LOHRMANN A, IWAMOTO N, BODROG Z, et al. Single-photon emitting diode in silicon carbide[J]. Nature Communications, 2015, 6: 7783.
    [60]

    AVSAR A, TAN J Y, LUO X, et al. van der Waals bonded Co/h-BN contacts to ultrathin black phosphorus devices. Nano Letters, 2017, 17(9): 5361-5367.
    [61]

    GOLD P, THOMA A, MAIER S, et al. Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths[J]. Physical Review, 2014, B89(3): 035313.
    [62]

    REINDL M, JONS K D, HUBER D, et al. Phonon-assisted two-photon interference from remote quantum emitters[J]. Nano Letters, 2017, 17(7): 4090-4095.
    [63]

    DELTEIL A, SUN Z, FÄLT S, et al. Realization of a cascaded quantum system: Heralded absorption of a single photon qubit by a single-electron charged quantum dot[J]. Physical Review Letters, 2017, 118(17): 177401.
    [64]

    DING F, SINGH R, PLUMHOF J D, et al. Tuning the exciton binding energies in single self-assembled InGaAs/GaAs quantum dots by piezoelectric-induced biaxial stress[J]. Physical Review Le-tters, 2010, 104(6): 067405.
    [65]

    ZOPF M, MACHA T, KEIL R, et al. Frequency feedback for two-photon interference from separate quantum dots[J]. Physical Review, 2018, B98(16): 161302.
    [66]

    DENG Y H, WANG H, DING X, et al. Quantum interference between light sources separated by 150 million kilometers[J]. Physical Review Letters, 2019, 123(8): 080401.
    [67]

    ZHANG R, GARNER S R, HAU L V. Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates[J]. Physical Review Letters, 2009, 103(23): 233602.
    [68]

    SPECHT H P, NÖLLEKE C, REISERER A, et al. A single-atom quantum memory[J]. Nature, 2011, 473(7346): 190-193.
    [69]

    SHIELDS A J. Semiconductor quantum light sources[J]. Nature Photonics, 2007, 1: 215-223.
    [70]

    HUANG H, TROTTA R, HUO Y, et al. Electrically-pumped wavelength-tunable GaAs quantum dots interfaced with rubidium atoms[J]. ACS Photonics, 2017, 4(4): 868-872.
    [71]

    ORIEUX A, VERSTEEGH M A M, JÖNS K D, et al. Semiconductor devices for entangled photon pair generation: A review[J]. Reports on Progress in Physics, 2017, 80(7): 076001.
    [72]

    GONG M, ZHANG W, GUO G C, et al. Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress[J]. Physical Review Letters, 2011, 106(22): 227401.
    [73]

    RASTELLI A, DING F, PLUMHOF J D, et al. Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators[J]. Physica Status Solidi (b), 2012, 249(4): 687-696.
    [74]

    GERARDOT B D, SEIDL S, DALGARNO P A, et al. Manipulating exciton fine structure in quantum dots with a lateral electric field[J]. Applied Physics Letters, 2007, 90(4): 041101.
    [75]

    BENNETT A J, POOLEY M A, STEVENSON R M, et al. Electric-field-induced coherent coupling of the exciton states in a single quantum dot[J]. Nature Physics, 2010, 6(12): 947-951.
    [76]

    HUDSON A J, STEVENSON R M, BENNETT A J, et al. Coherence of an entangled exciton-photon state[J]. Physical Review Le-tters, 2007, 99(26): 266802.
    [77]

    SAPIENZA L, MALEIN R N E, KUKLEWICZ C E, et al. Exciton fine-structure splitting of telecom-wavelength single quantum dots: Statistics and external strain tuning[J]. Physical Review, 2013, B88(15): 155330.
    [78]

    PATEL R B, BENNETT A J, FARRER I, et al. Two-photon interference of the emission from electrically tunable remote quantum dots[J]. Nature Photonics, 2010, 4(9): 632-635.
    [79]

    DELTEIL A, SUN Z, GAO W, et al. Generation of heralded entanglement between distant hole spins[J]. Nature Physics, 2016, 12(3): 218-233.
    [80]

    HÖFER B, OLBRICH F, KETTLER J, et al. Tuning emission energy and fine structure splitting in quantum dots emitting in the telecom O-band[J]. AIP Advances, 2019, 9(8): 085112.
    [81]

    TROTTA R, ZALLO E, ORTIX C, et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry[J]. Physical Review Letters, 2012, 109(14): 147401.
    [82]

    LIU Z K, YANG L X, WU S C, et al. Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln= Lu, Y)[J]. Nature Communications, 2016, 7: 12924.
    [83]

    SALTER C L, STEVENSON R M, FARRER I, et al. An entangled-light-emitting diode[J]. Nature, 2010, 465(7298): 594-597.
    [84]

    CHUNG T H, JUSKA G, MORONI S T, et al. Selective carrier injection into patterned arrays of pyramidal quantum dots for entangled photon light-emitting diodes[J]. Nature Photonics, 2016, 10(12): 782-787.
    [85]

    KEIL R, ZOPF M, CHEN Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions[J]. Nature Communications, 2017, 8: 15501.
    [86]

    XIANG Z H, HUWER J, STEVENSON R M, et al. Long-term transmission of entangled photons from a single quantum dot over deployed fiber[J]. Scientific Reports, 2019, 9: 4111.
    [87]

    JUSKA G, DIMASTRODONATO V, MERENI L O, et al. Towards quantum-dot arrays of entangled photon emitters[J]. Nature Photonics, 2013, 7(7): 527-531.
    [88]

    MUSIAŁ A, GOLD P, ANDRZEJEWSKI J, et al. Toward weak confinement regime in epitaxial nanostructures: Interdependence of spatial character of quantum confinement and wave function extension in large and elongated quantum dots[J]. Physical Review, 2014, B90(4): 045430.
    [89]

    WATANABE K, KOGUCHI N, GOTOH Y. Fabrication of GaAs quantum dots by modified droplet epitaxy[J]. Japanese Journal of Applied Physics, 2000, 39(2A): L79-L81.
    [90]

    WANG Z M, LIANG B L, SABLON K A, et al. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs (100)[J]. Applied Physics Letters, 2007, 90(11): 113120.
    [91]

    HUO Y H, RASTELLI A, SCHMIDT O G. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate[J]. Applied Physics Letters, 2013, 102(15): 152105.
    [92]

    HUO Y H, KŘÁPEK V, RASTELLI A, et al. Volume dependence of excitonic fine structure splitting in geometrically similar quantum dots[J]. Physical Review, 2014, B90(4): 041304.
    [93]

    HUBER D, REINDL M, HUO Y, et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots[J]. Nature Communications, 2017, 8: 15506.
    [94]

    BASSO BASSET F, BIETTI S, REINDL M, et al. High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy[J]. Nano Letters, 2017, 18(1): 505-512.
    [95]

    FURIS M, HTOON H, PETRUSKA M A, et al. Bright-exciton fine structure and anisotropic exchange in CdSe nanocrystal quantum dots[J]. Physical Review, 2006, B73(24): 241313.
    [96]

    GIOVANNETTI V, LLOYD S, MACCONE L. Quantum-enhanced measurements: Beating the standard quantum limit[J]. Science, 2004, 306(5700): 1330-1336.
    [97]

    HACKER B, WELTE S, REMPE G, et al. A photon-photon quantum gate based on a single atom in an optical resonator[J]. Nature, 2016, 536(7615): 193-196.
    [98]

    LEE J P, BENNETT A J, STEVENSON R M, et al. Multi-dimensional photonic states from a quantum dot[J]. Quantum Science and Technology, 2018, 3(2): 024008.
    [99]

    BENNETT A J, LEE J P, ELLIS D J P, et al. Cavity-enhanced coherent light scattering from a quantum dot[J]. Science Advances, 2016, 2(4): e1501256.
    [100]

    MVLLER M, VURAL H, SCHNEIDER C, et al. Quantum-dot single-photon sources for entanglement enhanced interferometry[J]. Physical Review Letters, 2017, 118(25): 257402.
    [101]

    PERNICE W H P, SCHUCK C, MINAEVA O, et al. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits[J]. Nature Communications, 2012, 3: 1325.
    [102]

    CLAUDON J, BLEUSE J, MALIK N S, et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire[J]. Nature Photonics, 2010, 4(3): 174-177.
    [103]

    GAO W B, FALLAHI P, TOGAN E, et al. Quantum teleportation from a propagating photon to a solid-state spin qubit[J]. Nature Communications, 2013, 4: 2744.
    [104]

    GAZZANO O, de VASCONCELLOS S M, ARNOLD C, et al. Bright solid-state sources of indistinguishable single photons[J]. Nature Communications, 2013, 4: 1425.
    [105]

    DIAMANTI E, LO H K, QI B, et al. Practical challenges in quantum key distribution[J]. NPJ Uantum Information, 2016, 2: 16025.
    [106]

    CHEN Y, ZHANG J, ZOPF M, et al. Wavelength-tunable entangled photons from silicon-integrated Ⅲ-Ⅴ quantum dots[J]. Nature Communications, 2016, 7: 10387.
    [107]

    PRTLJAGA N, COLES R J, O'HARA J, et al. Monolithic integration of a quantum emitter with a compact on-chip beam-splitter[J]. Applied Physics Letters, 2014, 104(23): 231107.
    [108]

    JÖNS K D, RENGSTL U, OSTER M, et al. Monolithic on-chip integration of semiconductor waveguides, beamsplitters and single-photon sources[J]. Journal of Physics, 2015, D48(8): 085101.
    [109]

    MIDOLO L, HANSEN S L, ZHANG W, et al. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits[J]. Optics Express, 2017, 25(26): 33514.
    [110]

    DAVANCO M, LIU J, SAPIENZA L, et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices[J]. Nature Communications, 2017, 8: 889.
    [111]

    KIM J H, AGHAEIMEIBODI S, RICHARDSON C J K, et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip[J]. Nano Letters, 2017, 17(12): 7394-7400.
    [112]

    ELSHAARI A W, ZADEH I E, FOGNINI A, et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits[J]. Nature Communications, 2017, 8: 379.
    [113]

    GSCHREY M, THOMA A, SCHNAUBER P, et al. Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography[J]. Nature Communications, 2015, 6: 7662.
    [114]

    SANTORI C, FATTAL D, VUČKIVUC' J, et al. Indistinguishable photons from a single-photon device[J]. Nature, 2002, 419(6907): 594-597.
    [115]

    KIM J H, RICHARDSON C J K, LEAVITT R P, et al. Two-photon interference from the far-field emission of chip-integrated cavity-coupled emitters[J]. Nano Letters, 2016, 16(11): 7061-7066.
    [116]

    WU X, JIANG P, RAZINSKAS G, et al. On-chip single-plasmon nanocircuit driven by a self-assembled quantum dot[J]. Nano Letters, 2017, 17(7): 4291-4296.
    [117]

    KEIL R, KAUFMANN T, KAUTEN T, et al. Hybrid waveguide-bulk multi-path interferometer with switchable amplitude and phase[J]. APL Photonics, 2016, 1(8): 081302.
    [118]

    ZADEH I E, ELSHAARI A W, JÖNS K D, et al. Deterministic integration of single photon sources in silicon based photonic circuits[J]. Nano Letters, 2016, 16(4): 2289-2294.
    [119]

    YUAN X, WEYHAUSEN-BRINKMANN F, MARTÍN-SÁNCHEZ J, et al. Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics[J]. Nature Communications, 2018, 9: 3058.
    [120]

    LIN H, LIN C H, LAI W C, et al. Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities[J]. Physical Review, 2011, B84(20): 201301.
    [121]

    SILVERSTONE J W, BONNEAU D, O'BRIEN J L, et al. Silicon quantum photonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6): 390-402.
    [122]

    REITHMAIER G, KANIBER M, FLASSIG F, et al. On-chip generation, routing, and detection of resonance fluorescence[J]. Nano Letters, 2015, 15(8): 5208-5213.
    [123]

    CALIC M, JARLOV C, GALLO P, et al. Deterministic radiative coupling of two semiconductor quantum dots to the optical mode of a photonic crystal nanocavity[J]. Scientific Reports, 2017, 7: 4100.
    [124]

    STRAUβ M, KAGANSKIY A, VOIGT R, et al. Resonance fluorescence of a site-controlled quantum dot realized by the buried-stressor growth technique[J]. Applied Physics Letters, 2017, 110(11): 111101.
    [125]

    JONS K D, ATKINSON P, MVLLER M, et al. Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots[J]. Nano Letters, 2012, 13(1): 126-130.
    [126]

    DOUSSE A, LANCO L, SUFFCZYN'SKI J, et al. Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography[J]. Physical Review Letters, 2008, 101(26): 267404.
    [127]

    SCHNAUBER P, SCHALL J, BOUNOUAR S, et al. Deterministic integration of quantum dots into on-chip multimode interference beamsplitters using in situ electron beam lithography[J]. Nano Letters, 2018, 18(4): 2336-2342.
    [128]

    HALLETT D, FOSTER A P, HURST D L, et al. Electrical control of nonlinear quantum optics in a nano-photonic waveguide[J]. Optica, 2018, 5(5): 644-650.
    [129]

    PYAYT A L, WILEY B, XIA Y, et al. Integration of photonic and silver nanowire plasmonic waveguides[J]. Nature Nanotechnology, 2008, 3(11): 660-665.
    [130]

    GUO X, QIU M, BAO J, et al. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits[J]. Nano Letters, 2009, 9(12): 4515-4519.
    [131]

    WEI H, WANG Z, TIAN X, et al. Cascaded logic gates in nanophotonic plasmon networks[J]. Nature Communications, 2011, 2: 387.
    [132]

    WEI H, XU H. Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits[J]. Nanophotonics, 2012, 1(2): 155-169.
    [133]

    CHANG D E, SØRENSEN A S, DEMLER E A, et al. A single-photon transistor using nanoscale surface plasmons[J]. Nature Physics, 2007, 3(11): 807-812.
    [134]

    KUMAR S, HUCK A, ANDERSEN U L. Efficient coupling of a single diamond color center to propagating plasmonic gap modes[J]. Nano Letters, 2013, 13(3): 1221-1225.
    [135]

    LI Q, WEI H, XU H. Quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire[J]. Nano Letters, 2015, 15(12): 8181-8187.
    [136]

    LI Q, PAN D, WEI H, et al. Plasmon-assisted selective and super-resolving excitation of individual quantum emitters on a metal nanowire[J]. Nano Letters, 2018, 18(3): 2009-2015.
    [137]

    SONG H Zh, USUKI T, HIROSE S, et al. Site-controlled photoluminescence at telecommunication wavelength from InAs/InP quantum dots[J]. Applied Physics Letters, 2005, 86(11): 113118.
    [138]

    DALACU D, MNAYMNEH K, SAZONOVA V, et al. Deterministic emitter-cavity coupling using a single-site controlled quantum dot[J]. Physical Review, 2010, B82(3): 033301.
    [139]

    DALACU D, MNAYMNEH K, LAPOINTE J, et al. Ultraclean emission from InAsP quantum dots in defect-free wurtzite InP nanowires[J]. Nano Letters, 2012, 12(11): 5919-5923.
    [140]

    KEIL R, ZOPF M, CHEN Y, et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions[J]. Nature Communications, 2017, 8: 15501.
    [141]

    JÖNS K D, SCHWEICKERT L, VERSTEEGH M A M, et al. Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality[J]. Scientific Reports, 2017, 7: 1700.
    [142]

    HUBER T, PREDOJEVIC A, KHOSHNEGAR M, et al. Polarization entangled photons from quantum dots embedded in nanowires[J]. Nano Letters, 2014, 14(12): 7107-7114.
    [143]

    HAFFOUZ S, ZEUNER K D, DALACU D, et al. Bright single InAsP quantum dots at telecom wavelengths in position-controlled InP nanowires: The role of the photonic waveguide[J]. Nano Letters, 2018, 18(5): 3047-3052.
    [144]

    UNOLD T, MUELLER K, LIENAU C, et al. Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction[J]. Physical Review Letters, 2005, 94(13): 137404.
    [145]

    KASPRZAK J, PATTON B, SAVONA V, et al. Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging[J]. Nature Photonics, 2011, 5(1): 57-63.
    [146]

    TEMNOV V V, WOGGON U. Superradiance and subradiance in an inhomogeneously broadened ensemble of two-level systems coupled to a low-Q cavity[J]. Physical Review Letters, 2005, 95(24): 243602.
    [147]

    BETZIG E, CHICHESTER R J. Single molecules observed by near-field scanning optical microscopy[J]. Science, 1993, 262(5138): 1422-1425.
    [148]

    de ASSIS P L, YEO I, GLOPPE A, et al. Strain-gradient position mapping of semiconductor quantum dots[J]. Physical Review Letters, 2017, 118(11): 117401.
    [149]

    SONG H Zh, USUKI T, NAKATA Y, et al. Formation of InAs/GaAs quantum dots from a subcritical InAs wetting layer: A reflection high-energy electron diffraction and theoretical study[J]. Physical Review, 2006, B73(11): 115327.
    [150]

    LIU J, KONTHASINGHE K, DAVANÇO M, et al. Single self-assembled InAs/GaAs quantum dots in photonic nanostructures: The role of nanofabrication[J]. Physical Review Applied, 2018, 9(6): 064019.
    [151]

    KREINBERG S, PORTE X, SCHICKE D, et al. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels[J]. Nature Communications, 2019, 10: 1539.
    [152]

    STOCK E, ALBERT F, HOPFMANN C, et al. On-chip quantum optics with quantum dot microcavities[J]. Advanced Materials, 2013, 25(5): 707-710.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article views(15993) PDF downloads(48) Cited by()

Proportional views

The progress of semiconductor quantum dot based quantum emitter

  • 1. Southwest Institute of Technical Physics, Chengdu 610041, China
  • 2. Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract: Quantum emitters serve as the building blocks of quantum network, connecting quantum computing, quantum communication and quantum metrology. Semiconductor quantum dots (QDs) are widely considered as the best candidate for quantum emitters. By a decade of effort, the controllability, purity, brightness, indistinguishability, and coherence of QD emitters are greatly improved so that they are much closer to the application level. In this paper, the scientific and technological development of quantum emitters based on QDs were reviewed. Firstly, QD-based single photon sources have achieved indistinguishability of near unity, high purity, and high extraction efficiency. Secondly, QD-based entangled photon emitters have achieved high bit rate, high entanglement fidelity by improvements such as eliminating fine structure splitting. Thirdly, remarkable development has been made towards on-chip integration of QD emitters into planar circuits and nano-photonic systems. It turns out that quantum emitters based on semiconductor QDs are greatly potential to be applied in quantum information processing systems in the near future.

引言
  • 量子信息处理技术正在快速发展并将成为未来信息网络的核心技术。量子信息处理系统可以由超导体、光子、电子等多种物理体系构成[1]。在利用光学和光子元件的系统中,量子光源是量子通信[2]、量子计算[3]和量子测量[4-5]等多种量子应用领域的基本构件。光量子技术需要高效的、按需发射的、高度全同的单光子源或者光子纠缠源[6]。自发参量下转换虽然提供了很高全同性的光子,但其亮度较低、可扩展性较差。因此,具有纳米结构的固体光子源,如半导体量子点或金刚石色心等的发展受到了人们的广泛关注[7]。半导体量子点具有类似于单个原子系统的离散量子态,因此拥有巨大的潜力被用作优良的量子光源[8]。目前,半导体量子点是性能最好的光子产生系统,几乎所有物理特性都具有很高的品质,如光子产生率高、光学相干性好、光谱可调谐范围广等[9]。最重要的是,量子点作为按需纠缠光子对的最有前途的候选源,在未来的量子信息系统中具有广阔的应用前景[10-13]。基于量子点的半导体量子光源在近20年来得到了广泛而深入的研究,基于量子点的量子光源被用于制备自旋光子纠缠、量子密钥分发、量子态转移和量子中继器[14-19],在构建量子网络中发挥了重要作用。特别是近年来,量子点量子光源的发展比以往有了更大的进步[20-22]

    本文中从基于量子点的单光子光源、基于量子点的纠缠光源以及量子点量子光源的片上集成3个方面综述了量子点量子光源的研究进展。

1.   基于半导体量子点的单光子源
  • 半导体量子点单光子源适用于按需光子产生。从本世纪初开始,量子点作为潜力巨大的单光子源得到了深入研究。但在2016年之前, 还没有产生过具有近完美全同的、高纯度的、高亮度的单光子源[23-31]。增加光源亮度最有效的方式是将量子点嵌入到一个平面微腔中。2016年, SOMASCHI等人在电控微腔中制备了InGaAs量子点光源[32](如图 1所示), 其量子点单光子源的质量是目前性能最好的,全同性为0.9956±0.0045,纯度达到g(2)(0)=0.0028±0.0012,收集效率为65%,亮度是以前的100倍。该量子点单光子源在可扩展的多光子实验如玻色子采样中得到了很好的应用[33]。为了进一步提高量子点单光子源的收集效率,需要对准直技术进行大量的研究。LIU课题小组报道了基于微柱腔内精细定位量子点的单光子源,收集效率为68%[34]。具有这种质量的单光子发射已经被许多工作进一步证实[35-36],从而为复杂、可扩展的光子量子信息处理开辟了新的道路。

    然而在通讯频段目前还没有成功实现高品质的单光子源。InAs/InP量子点材料体系可以产生通讯波段的光子,并于2005年首次实现1.5μm的单光子发射[37]。SONG团队设计了新颖的微柱腔和单片微柱腔,用于通讯波段光子与量子点的弱耦合和强耦合,以实现高效、高不可分辨性的单光子源[38-40]。最近,也有研究团队使用光子晶体微腔实现了1.3μm和1.5μm波段的明亮单光子源[41-42]。此外,通过在量子点固有的纳米尺度上塑造量子点的光学环境,发射出的单个光子也可以耦合到统一的导模上,使单光子源具有高度全同性[43]。这些研究使得基于量子点的按需发射源、量子门、量子干涉等成为可能,形成了线性光量子计算和量子通信的基础。

    虽然微腔在改善量子点单光子源品质方面效果良好,但微腔在耦合强度等方面还存在欠缺。为了进一步提高耦合强度,人们发现量子点的单光子发射也可以通过等离子体纳米结构等更紧凑的方式得到增强。由于等离子体纳米结构的亚波长模式体积,发射体与等离子体共振模之间的耦合强度得到增强[44-48]。平面多层超材料纳米结构被证实对自发辐射具有宽带PURCELL效应,PFEIFFER等人展示了一种利用等离子体增强自组装半导体量子点发射的新方法[49]。LI等人在最近的工作中利用Ag-SiO2多层超材料和纳米结构光栅,将CdSe/ZnS量子点在570nm~680nm波段的自发辐射增强了3倍~6倍[50],如图 2所示。多层光栅有助于在光栅槽内定位量子点,增强量子点与表面等离子体模的相互作用[51]。这些工作有助于理解量子光源与超材料纳米结构之间增强的光-物质相互作用,有助于将基于超材料的量子点单光子源应用于量子信息处理中。

    目前的微腔量子点单光子源都工作在极低温度下(通常小于10K),严重限制了其适用范围,人们希望单光子源能够在室温下工作,且还能够被电激发和控制,并能够与未来量子存储和单光子探测器等量子网络的其他关键元器件兼容,最近几年在这方面的确取得了重大的进展[52-54]。研究表明,室温单光子光源更容易在胶体核/壳结构量子点中实现[55-56]。2017年,LIN等人研究了单胶体量子点作为电驱动单光子源中的量子光源,结合器件中的隔离层,实现了室温下最佳的抗聚束单光子产生,开辟了开发新型室温量子光源的途径[57]。为了解决室温单光子的纯度无法与低温光子相比的问题,FENG等人进行了单光子的纯化[58],从室温胶体量子点中实现高纯度的单光子,如图 3所示。通过对单个光子进行适当的修饰,得到了单光子纯度为g(2)(0)=0.01。这个值只有在之前的低温InGaAs量子点上才能实现,而且其纯度不随激励功率或不同量子点的变化而变化。他们发现能够在不影响单光子质量的前提下提高发射速率,提供了一种在室温下制备高纯度量子点单光子源的新方法。

    在构建量子网络中必须对远程量子光源进行连接,这是一项极富挑战的任务,因为不同的“人造原子”的量子态必须按需高保真地准备好,要求单光子源产生的光子必须在所有可能的自由度下都难以分辨[59-62]。针对这一迫切需要,事实上目前已有团队开展了相关实验研究。2017年,TROTTA课题组展示了一种前所未有的双光子干涉[63],其双光子来自嵌入在平面分布式布喇格反射腔中的远程应变可调GaAs量子点,并提出了一种新的声子辅助双光子激发方案。利用该方案产生了难以分辨的纠缠光子对,制备了双激子态,对环境退相干具有较强的鲁棒性。这一结果对于实现不同人工原子间的量子中继器和多光子量子相互作用具有重要的里程碑意义。SCHMIDT课题组在演示了一种阻止两个独立量子点漂移的技术之后[64],在2018年的Hong-Ou-Mandel(HOM)干涉实验中实现了基于不同量子点的双光子长距离稳定干涉[65]。更引人注目的是,PAN团队报道了两个相隔1.5×108km的光子之间的量子干涉、纠缠和非局域特性,一个产生于太阳,另外一个产生于地球上的半导体量子点,这在天文尺度上开辟了一条量子光子学之路[66]。此外,人工原子和自然原子的结合使得量子点的单光子态可以被保存为原子态,具有特别长的存储时间,可用于建立量子中继器[67-70]

    综上所述,基于量子点的单光子源实现了近乎完美的全同性、10-3级的高纯度、以及近70%的收集效率,甚至在通信波段也大大提高了亮度;等离子体和其它纳米结构开始在改善量子点单光子源方面发挥重要作用;量子点单光子源的室温工作和电驱动已不再是一项艰巨的任务;甚至可以实现远程量子点量子光源之间的关联,这些都预示着基于半导体量子点的单光子源在量子信息处理中成功应用的前景。

2.   基于量子点的光子纠缠源
  • 纠缠双光子源可应用于量子秘钥分发、量子计量、量子隐形传态、量子中继器等领域[14-19],由于缺乏确定的纠缠源,纠缠现象还处于实验阶段;从应用前景来说,固态纠缠光子源具有特殊的意义[71]。在许多系统中,半导体量子点对于偏振纠缠光子对的发射极具效力。由于典型的退相干效应,最初认为量子点的纠缠程度有限,但最近的研究改变了这种看法。量子点纠缠光子的最大限制是量子点对称性的破坏,这是由应变、成分变化和形状不规则性的各向异性造成的,它导致了激子发射中的精细结构分裂效应[72](fine-structure splitting, FSS)。为了构建纠缠态,精细结构分裂效应的辐射寿命有限线宽应小于1μeV[73]。一些后生长调控方法,如压电材料引起的单轴应力调制[64]、电场诱导量子限制Stark效应[74-75]、磁场引入的塞曼转变[76],或激光退火技术[77]等,可很大程度消除精细结构分裂,这对于提高量子点光源的双光子产率很有帮助[78]。运用这些技术,纠缠光子的最高产率达到近10kHz[79]。HFER课题组通过施加单轴应力,成功地消除了集成在单轴压电驱动器上的通信波段InGaAs/GaAs量子点的精细结构分裂[80],如图 4所示。该技术能够在不降低量子点光源性能的前提下,对量子点发射波长及其精细结构分裂进行调谐,朝着通信波段产生高通量纠缠光子对的目标迈出了重要一步。

    可以预期,单轴应变与Stark效应相结合[81],将使实现通信波段的量子点纠缠光子源成为可能,因为其中能量的调节独立于精细结构分裂。此外,由于半导体量子点中的应变抑制精细结构分裂是在片内平台上实现的[82],因此利用类似的通信波长架构,量子中继网络也有可能实现[83-85]。2019年,SHIELDS课题组报道了一个为期一周的偏振纠缠光子传输,实现了单InAs/GaAs量子点18km长的城域光纤网络传输[86],这为低复杂度、鲁棒性的量子信息网络提供了一种可靠、稳定的技术。

    量子点的形貌和平面各向异性对精细结构分裂起着主导作用,最有效的处理办法是生长零精细结构分裂的量子点,而不是使用通过后选择或者调控的方式消除精细结构分裂。2013年, JUSKA等人[87]在图形化GaAs衬底上制备了金字塔位点控制、高度对称的InGaAsN量子点,在非共振激发下高达15%的量子点可以产生偏振纠缠光子,其保真度可达0.72。不同于形貌高度对称的方法,另外一种有效途径是生长大的低应力InGaAs量子点;尽管存在各向异性,但其精细结构分裂远低于10μeV[88]。还有一些其它的方法来增加量子点发射纠缠光子[89],如液滴外延法;WANG等人通过局部液滴蚀刻将纳米孔蚀刻到AlGaAs衬底中制备出量子点[90],2013年, HUO等人证明了液滴量子点具有4μeV的超小精细结构分裂效应[91]。由于交换相互作用是由电子-空穴波函数重叠决定的,因此除了平面的结构外,垂直结构的形貌也可以降低精细结构分裂[92]。2017年,HUBER等在未用任何生长后技术的情况下[93],获得了量子点纠缠源迄今为止最高的纠缠保真度,达到0.94,如图 5所示。所获得的保真度对于随时可用的量子中继器具有很大吸引力。2018年, BASSO BASSET等人在GaAs基底上提出了一种改进的方法,将Ga液滴结晶,并在约520℃的高温下沉积随后的阻挡层[94],通过抑制在低温生长中较高的缺陷密度,量子点的晶体质量得到了显著改善。

    多光子态是安全量子中继器、量子计算机和量子增强传感器必不可少的光源,实现高维光子态有多种方法,但即使是最先进的技术也是概率性的,或者保真度受限[95-97]。一种有效方法是通过单个量子光源直接创建一个复杂的光子态,这在原则上允许确定的多量子比特光子态。LEE等人利用微腔量子点中增强喇曼跃迁模式来进行自旋态制备,然后依次产生时间片单光子W态[98],如图 6所示。他们利用微腔受激喇曼辐射效应,对捕获的空穴自旋进行自旋态制备。该技术允许任意单光子时间片编码状态的确定性生成,这种能力将有助于单模量子计算和最大限度地改善长距离量子秘钥分发。多光子纠缠态,如“NOON态”,由于其在高精度、量子增强相位测定中的应用,也引起了广泛的关注[99]。自发参量下转换方法是通过在分束器上混合量子光和经典光而产生NOON态,相比之下,MVLLER等人[100]则利用HOM干涉证明了基于量子点单光子源产生的双光子NOON态的超高分辨率的相位测量,利用带电激子态的脉冲共振荧光特性,提高了相位不确定度的精度,使之优于标准量子极限。这一研究为将来实现真实的量子传感器指出了一个方向。

    综上所述,最初被认为有限的量子点光子纠缠事实上实现了10kHz的高纠缠比特率;应力调节和电驱动在实现纠缠量子点光子源方面作用显著;原位生长技术大大改善了量子点的整体对称性,使纠缠保真度达到0.94;半导体量子点的多光子纠缠已经成为现实。这些进展为量子点成为量子计算和量子通信领域的确定性复杂量子光源铺平了道路。

3.   量子点量子光源的片上集成
  • 由于缺乏在同一芯片内同时产生和控制光子的方法,长期以来一直是实现高效的多量子比特系统和芯片尺度量子光子系统的一个障碍。光子集成是近年来发展起来的一种构建片上量子信息处理系统的方法,其优势在于具有量子发射、量子处理、量子存储和量子测量等多种功能[101]。为了获得量子信息网络的确定性和可扩展性的光-物质量子接口,需要将固态量子光源集成到光子芯片中[102]。这一要求包括确定的单光子源、复杂的量子比特操作电路和片上检测等技术,显然半导体量子点是最好的构造单元之一[103],因为它们可以集成到微腔和光子纳米结构中[104]。量子点具有片内电激发[105]、波长可调纠缠光子发射等优点[106],将半导体量子点集成在光子芯片上已经取得了很大的进展。

    在这一领域中,如何实现Ⅲ-Ⅴ光量子电路面临巨大挑战,包括将选定的量子点确定性地集成到光波导/微腔中,有效滤除发射光谱中的特定量子跃迁,片上抽运抑制,以及多个量子点的复用[107-108]。外延生长的InGaAs/GaAs量子点经常可集成到各种光子结构中,2017年, MIDOLO等人在光子波导中嵌入量子点光源,集成了电光移相器[109],使单个自组装量子点发射的光子可以主动地传输到干涉仪的两个输出端。DAVANCO等人开发了一种多光子集成平台[110],可以直接将包含量子点的GaAs波导和微腔与低损耗的Si3N4波导集成在一起,在该平台上实现了单InAs/GaAs量子点与Si3N4波导之间的高效光学接口,构建了微腔内量子点的发射增强和强耦合路径。最近,THYRRESTRUP等人[44]通过在一个电接触纳米光子膜中嵌入量子点来表征量子光源的寿命极限线宽,向片上集成非线性光子回路的实现迈出了重要一步。将按需单光子源集成到硅光子芯片上仍然是一个困难的挑战,但KIM等人[111]实现了硅光子器件与固态单光子光源的集成,为芯片规模的单光子源和片上光学量子信息处理铺平了道路。此外,将预选量子光源确定性地集成到纳米光子元件中的制造技术,对包含多重光源的量子回路的实现十分关键。ELSHAARI等人[112]用一种混合的、可扩展的方法克服了几乎所有上述挑战。如图 7所示,在他们的方案中,其结构为InAsP量子点嵌入InP纳米线(红宝石色)中,InP纳米线与Si3N4波导(蓝色)、片上可调谐环形谐振器滤波器集成在一起。单个Ⅲ-Ⅴ量子点量子光源被集成在一个互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)兼容的光子电路中,发射源的激励抑制超过95dB,单光子路由带宽达到40nm,系统尺寸大小是类似平面方法的10-6。这些结果向芯片集成的单光子源和片上光量子计算迈出了重要的一步,并充分挖掘了光量子技术的潜力。

    外延量子点通常具有扁平的形貌,因此它们主要沿z方向量子化,只适合制作高效垂直发射的单光子器件[113-114]。为了实现对集成量子器件的平面操控,需要运用平面集成光量子学的技术[115-117],制作在x-y平面内具有量子化轴的量子点。在ZADEH等人的研究中[118],纳米线-量子点从基底上移除,并被旋转90°以实现与介质波导的有效耦合。最近,YUAN等人更有力地展示了如何在不旋转任何方向的情况下,将量子点的量子化轴旋转到生长平面上[119],他们的技术保持了量子点异质结构与平面光子处理的兼容性,其方案如图 8所示。包括了高质量、初始无应变的GaAs量子点和提供平面内应力的微机械压电驱动器。与以往大多数实验在生长后加入应力作为扰动来微调量子点的发射特性不同[120],在决定量子化轴的作用上,限制效应相对于应力是一个微扰量。研究表明,单轴应力可以用作获得具有理想定向跃迁偶极子和增强振子强度的量子光源的工具。

    片上集成还有另一个目标,就是将量子光源、量子门和量子探测器等各种量子元件集成在一个芯片上。在量子网络中,增强量子功能,避免不同技术平台之间的损失是非常必要的[121-122]。事实上将量子发射源确定性地集成到片上量子纳米光子元件中已经引起了人们的广泛关注,这些技术包括位点控制量子点生长[123-125]、光源纳米结构对齐[28]、原位光刻[126]等。由于其高模式分辨率,以及光谱和空间控制,原位电子束光刻允许将预选量子光源集成到复杂的光子系统中。SCHNAUBER等人通过原位电子束光刻技术将InAs量子点确定性地集成到多模干涉分束器中[127],如图 9所示。结合波长微调[128],在一个2×2分束器中对多个量子点进行频谱选择性集成,为进行片上HOM干涉实验打开了一扇窗口。在单个波导中放置两个谐振量子点,可以保证两个量子光源之间的激子态转移。这项工作为多节点、完全集成的量子光子芯片铺平了道路。这种技术通常与金属纳米结构的表面等离子体激元有关,由于其亚波长约束和微传播尺度,在集成纳米光子电路领域具有广阔的应用前景[129-132]。单量子光源与等离子体纳米线之间的强相互作用已被用来制造集成的量子光学器件,如高效的单光子源和晶体管[133-135]。为了创造一种更简单、更灵活、无衍射限制的光学分辨和激发技术,LI等人通过调节表面等离子体激元的干涉场[136],可有效控制和激发多个量子点和一条银纳米线,实现了两个量子点在100nm范围内的选择性调控。

    量子光学中一个突出的挑战是可扩展性,它要求以确定性的方式定位单个量子光源。到目前为止,大多数量子点量子光源都是基于随机有核量子点,这使得它们无法有效地集成到芯片中。早在10多年前,基底上指定位置生长的半导体量子点就已经被制备出来用于实现集成单光子源[137],并被证实更有利于量子点与光子结构的确定性集成[138]。有报道称纳米线中原位控制的量子点光源可以产生纯度极好的单光子源,纯度g(2)(0) < 0.005[139],偏振纠缠光子对的保真度超过80%[140-142]。为了将这种方法扩展到通信波段,在2018年, HAFFOUZ等人实现了在InP纳米线波导中嵌入明亮的单一InAsP量子点[143],借助适当优化设计的波导,将通信O波段量子点的发射计数率从0.4kHz提高到35kHz。这一结果为利用位置控制生长来集成通信波段的有效单光子源铺平了道路。

    光子纳米结构中量子点位置的精度实际上决定了耦合强度,因此对于控制量子芯片中的量子相互作用[144-145]和集体效应[146]至关重要。虽然已报道有全光成像方法[147],但它们不能很好地用于光子纳米结构中的量子点成像。2017年,de ASSIS等人演示了一种无损量子点映射技术[148],利用两种交叉极化的力学模式,对生长面上的量子点位置进行了2维映射。与光学近场方法和扫描隧道显微镜相比[149],该技术可以确定深埋在具有更高空间分辨率的微结构中的量子点的位置。在2018年,LIU课题组利用纳米制备和光致发光成像技术定位了单InAs/GaAs量子点的位置[150],其定位偏差控制在5nm以内,可以根据与纳米表面的距离函数来跟踪量子点光子统计量。

    考虑到集成的紧凑性和可扩展性,电子载波注入将是非常有吸引力的,因为它避免了笨重的外部激光源。然而基于PIN二极管设计的简单电驱动源不允许共振激发,并且受到过量载流子引入的电荷噪声的影响,这两种情况都限制了发射光子的全同性[151]。STOCK等人将电致光激发源与谐振激发的量子点光源集成在同一芯片上[152],成功解决了这一问题,而且在不干扰其它集成元素的情况下,以本地化的方式对光源进行调优。

    综上所述,基于量子点的量子光源已经成功地与光子学微纳结构集成到一个芯片中;量子点可以调谐成平面发射的方式,使普通量子点更适合于芯片集成,并实现与其它量子器件的量子交互;原位控制和片上电驱动量子点技术发展迅速,迈出了实现全片上量子集成的重要一步。

4.   结束语
  • 半导体量子点被认为是量子光源的最佳选择,本文中综述了近年来基于半导体量子点的量子光源的科学和技术进展。基于量子点的单光子源已经实现了近乎完美的全同性,纯度达到10-3量级,收集效率接近70%;即使在通信频段,其亮度也得到了大大提升;等离子体及其相关纳米结构开始在改善量子点单光子发射源方面发挥重要作用;量子点单光子源的室温工作和电驱动已不再是一项艰巨的任务,甚至可以实现远程量子点量子光源之间的关联。基于半导体量子点的纠缠光源进展很大,量子比特率已高达10kHz;原位生长等技术大大改善了量子点的整体对称性,使纠缠保真度达到0.94;半导体量子点的多光子纠缠已经成为现实。量子点被进一步证明是量子信息处理中最好的按需、纠缠、片上集成的量子光源。量子点量子光源已经实现了与在电子、光子芯片上的集成;通过集成,量子点量子光源实现了与其它器件的量子交互;原位控制和片上电驱动技术进步很大,解决了实现全片上量子集成的关键工艺。研究进展表明了量子点量子光源在量子信息领域的良好应用前景。

Reference (152)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return