Citation: | LI Junhong, FENG Xianing, WEI Lianfu. Photon loss robustness of optical interferometer for quantum-enhanced phase precision measurements[J]. LASER TECHNOLOGY, 2025, 49(2): 159-165. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.001 |
In order to improve the phase measurement sensitivity of photonic optical interferometers in photon loss scenarios, a theoretical study of the sensitivity of photon coincidence measurement under photon loss has been carried out using a typical twin-Fock state as an input of a photonic Mach-Zehnder interferometer. Compared to parity measurement, the analysis shows that the photon coincidence measurement scheme is more robust to photon loss when using photon pairs as input, and the phase measurement sensitivity based on photon coincidence measurement can be very close to the quantum Cramér-Rao bound when the phase is between π/4 and π/2. The results show that the use of the photon coincidence measurement scheme can help to achieve ultra-high precision phase measurements in real-world environments, thus offering the possibility of breaking through the traditional scattering noise limit.
[1] |
徐果, 贺成成, 张伦宁, 等. 马赫-曾德尔干涉仪的定位技术研究[J]. 激光技术, 2019, 43(2): 195-200. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.009
XU G, HE Ch Ch, ZHANG L N, et al. Research of positioning technology of Mach-Zehnder interferometer[J]. Laser Technology, 2019, 43(2): 195-200(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2019.02.009
|
[2] |
包为政, 张福民, 曲兴华. 基于等光频细分重采样的调频干涉测距方法[J]. 激光技术, 2020, 44(1): 1-6. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.001
BAO W Zh, ZHANG F M, QU X H. Laser ranging method of frequency modulation interference based on equal optical frequency subdivision resampling[J]. Laser Technology, 2020, 44(1): 1-6(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2020.01.001
|
[3] |
ISRAEL Y, ROSEN S, SILBERBERG Y. Supersensitive polarization microscopy using N00N states of light[J]. Physical Review Letters, 2014, 112(10): 103604. DOI: 10.1103/PhysRevLett.112.103604
|
[4] |
MOREAU P A, TONINELLI E, GREGORY T, et al. Imaging with quantum states of light[J]. Nature Reviews Physics, 2019, 1(6): 367-380. DOI: 10.1038/s42254-019-0056-0
|
[5] |
PIRANDOLA S, BARDHAN B R, GEHRING T, et al. Advances in photonic quantum sensing[J]. Nature Photonics, 2018, 12(12): 724-733. DOI: 10.1038/s41566-018-0301-6
|
[6] |
ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102. DOI: 10.1103/PhysRevLett.116.061102
|
[7] |
YAMAMOTO K, KOKEYAMA K, MICHIMURA Y, et al. Design and experimental demonstration of a laser modulation system for future gravitational-wave detectors[J]. Classical and Quantum Gravity, 2019, 36(20): 205009. DOI: 10.1088/1361-6382/ab4489
|
[8] |
CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review, 1981, D23(8): 1693-1708. http://www.tandfonline.com/servlet/linkout?suffix=CIT0010&dbid=16&doi=10.1080%2F10408349608050569&key=10.1103%2FPhysRevD.23.1693
|
[9] |
ANISIMOV P M, RATERMAN G M, CHIRUVELLI A, et al. Quantum metrology with two-mode squeezed vacuum: Parity detection beats the Heisenberg limit[J]. Physical Review Letters, 2010, 104(10): 103602. DOI: 10.1103/PhysRevLett.104.103602
|
[10] |
王帅, 眭永兴, 孟祥国. 光子增加双模压缩真空态在马赫-曾德尔干涉仪相位测量中的应用[J]. 物理学报, 2020, 69(12): 124202. DOI: 10.7498/aps.69.20200179
WANG Sh, SUI Y X, MENG X G. Application of photon-added two-mode squeezed vacuum states to phase estimation based on Mach-Zehnder interferometer[J]. Acta Physica Sinica, 2020, 69(12): 124202(in Chinese). DOI: 10.7498/aps.69.20200179
|
[11] |
SESHADREESAN K P, ANISIMOV P M, LEE H, et al. Parity detection achieves the Heisenberg limit in interferometry with coherent mixed with squeezed vacuum light[J]. New Journal of Physics, 2011, 13(8): 083026. DOI: 10.1088/1367-2630/13/8/083026
|
[12] |
DOWLING J P. Quantum optical metrology—the lowdown on high-N00N states[J]. Contemporary Physics, 2008, 49(2): 125-143. DOI: 10.1080/00107510802091298
|
[13] |
JOO J, MUNRO W J, SPILLER T P. Quantum metrology with entangled coherent states[J]. Physical Review Letters, 2011, 107(8): 083601. DOI: 10.1103/PhysRevLett.107.083601
|
[14] |
HOLLAND M J, BURNETT K. Interferometric detection of optical phase shifts at the Heisenberg limit[J]. Physical Review Letters, 1993, 71(9): 1355-1358. DOI: 10.1103/PhysRevLett.71.1355
|
[15] |
CAMPOS R A, GERRY C C, BENMOUSSA A. Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements[J]. Physical Review, 2003, A68(2): 023810. http://www.onacademic.com/detail/journal_1000036088764810_4e7d.html
|
[16] |
KIM T, SHIN J, HA Y, et al. The phase-sensitivity of a Mach-Zehnder interferometer for Fock state inputs[J]. Optics Communications, 1998, 156(1/3): 37-42.
|
[17] |
侯丽丽, 王帅. 双模压缩Fock态在量子相位估计中的应用[J]. 聊城大学学报(自然科学版), 2020, 33(6): 60-65.
HOU L L, WANG Sh. Applications of two-mode squeezed Fock state in quantum phase estimation[J]. Journal of Liaocheng University (Natural Science Edition), 2020, 33(6): 60-65(in Chinese).
|
[18] |
GERRY C C, MIMIH J. The parity operator in quantum optical metrology[J]. Contemporary Physics, 2010, 51(6): 497-511. DOI: 10.1080/00107514.2010.509995
|
[19] |
SESHADREESAN K P, KIM S, DOWLING J P, et al. Phase estimation at the quantum Cramér-Rao bound via parity detection[J]. Physical Review, 2013, A87(4): 043833. http://www.researchgate.net/profile/Sejong_Kim/publication/257982005_Phase_estimation_at_the_quantum_Cramer-Rao_bound_via_parity_detection/links/544224bc0cf2a6a049a5e987.pdf
|
[20] |
BIRRITTELLA R J, ALSING P M, GERRY C C. The parity operator: Applications in quantum metrology[J]. AVS Quantum Science, 2021, 3(1): 014701. DOI: 10.1116/5.0026148
|
[21] |
张渊明. 光量子态的量子费希尔信息及其在相位估值中的应用[D]. 北京: 北京交通大学, 2015: 57-62.
ZHANG Y M. Quantum Fisher information and its application in optical phase estimate[D]. Beijing: Beijing Jiaotong University, 2015: 57-62(in Chinese).
|
[22] |
ESCHER B M, de MATOS FILHO R L, DAVIDOVICH L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology[J]. Nature Physics, 2011, 7(5): 406-411. DOI: 10.1038/nphys1958
|
[23] |
DEMKOWICZ-DOBRZANSKI R, DORNER U, SMITH B J, et al. Quantum phase estimation with lossy interferometers[J]. Physical Review, 2009, A80(1): 013825. http://europepmc.org/abstract/MED/19257407
|
[24] |
DATTA A, ZHANG L, THOMAS-PETER N, et al. Quantum metrology with imperfect states and detectors[J]. Physical Review, 2011, A83(6): 063836. http://www.arxiv.org/pdf/1012.0539.pdf
|
[25] |
ZHANG Y M, LI X W, YANG W, et al. Quantum Fisher information of entangled coherent states in the presence of photon loss[J]. Physical Review, 2013, A88(4): 043832. http://www.researchgate.net/profile/Wen_Yang15/publication/253239405_Quantum_Fisher_information_of_entangled_coherent_states_in_the_presence_of_photon_loss/links/00b4953bffdcc9022f000000.pdf
|
[26] |
DORNER U, DEMKOWICZ-DOBRZANSKI R, SMITH B J, et al. Optimal quantum phase estimation[J]. Physical Review Letters, 2009, 102(4): 040403. DOI: 10.1103/PhysRevLett.102.040403
|
[27] |
FENG X N, LIU H Y, WEI L F. Waveguide Mach-Zehnder interferometer to enhance the sensitivity of quantum parameter estimation[J]. Optics Express, 2023, 31(11): 17215-17225. DOI: 10.1364/OE.487793
|
[28] |
FENG X N, HE D, WEI L F. Robust phase metrology with hybrid quantum interferometers against particle losses[J]. Physical Review, 2023, A107(6): 062411.
|
[29] |
GARDINER C, ZOLLER P. Quantum noise: A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics[M]. Berlin, Germany: Springer Science & Business Media, 2004.
|
[30] |
OH C, LEE S Y, NHA H, et al. Practical resources and measurements for lossy optical quantum metrology[J]. Physical Review, 2017, A96(6): 062304. http://arxiv.org/pdf/1707.03210
|
[31] |
PEZZÉ L, SMERZI A. Entanglement, nonlinear dynamics, and the Heisenberg limit[J]. Physical Review Letters, 2009, 102(10): 100401. DOI: 10.1103/PhysRevLett.102.100401
|
[32] |
LIU J, YUAN H, LU X M, et al. Quantum Fisher information matrix and multiparameter estimation[J]. Journal of Physics, 2020, A53(2): 023001.
|