HTML
-
构建了仿真实验和等效热焦距测量实验,分别对快速求解算法的测量精度和测量速度进行验证。其中,通过仿真实验模拟不同角度莫尔条纹,采用传统频域迭代算法和快速求解算法对模拟莫尔条纹的倾角进行测量,三者进行对比验证快速求解算法的测量精度;通过等效热焦距测量实验采集莫尔条纹,对两种测量算法的测量速度进行对比,验证快速求解算法的测量速度,同时验证快速求解算法对激光材料热效应等效热焦距参量测量的适用性。
-
基于MATLAB软件构建了理想莫尔条纹模拟程序和算法仿真程序。模拟了倾角为5°, 15°, 30°, 45°, 60°, 75°, 85°, 90°的莫尔条纹,其中倾角为45°的模拟莫尔条纹如图 3所示。
分别采用传统频域迭代算法和快速求解算法对莫尔条纹倾角进行求解,迭代10次,测量结果如表 1所示。
simulate angle/(°) traditional algorithm/(°) fast algorithm/(°) 5 5.001 5.001 15 15.002 15.002 30 30.001 30.001 45 45.000 45.000 60 59.999 59.999 75 74.998 74.998 85 85.001 85.001 90 89.999 89.999 Table 1. Results with different algorithms
由表 1可知,传统算法和快速求解算法的测量结果完全一致,而且和模拟角度均小于0.002°。排除图像离散化过程引入的测量误差,两种算法均可精确求解莫尔条纹倾角,测量误差小于0.002°,证明了快速求解算法的测量精度。
-
采用实验室基于泰伯-莫尔条纹技术研制的长焦距测量仪对500J钕玻璃激光器激光材料热效应等效热焦距参量进行测量。测量算法以长焦距测量仪测量软件为基础,采用Visual Studio 2008编码实现,计算机为CPU Intel i3处理器(主频3.5GHz)及内存4GB的工控机。通过对比两种测量算法的测量时间验证快速求解算法的测量速度,并验证测量算法对等效热焦距参量的测量的有效性。CCD采集的莫尔条纹见图 4。
采集任意状态下12幅莫尔条纹图,采用传统频域迭代算法和快速求解算法对条纹倾角进行求解,测量时间如表 2所示。
number traditional algorithm/s fast algorithm/s 1 15.62 0.33 2 14.31 0.42 3 13.48 0.43 4 16.26 0.33 5 17.12 0.38 6 13.61 0.32 7 15.45 0.48 8 14.33 0.49 9 15.26 0.45 10 14.42 0.43 11 14.81 0.37 12 16.03 0.36 mean 15.0 0.4 Table 2. Measurement time results with different algorithms
由表 2可知,采用传统算法完成一次测量平均测量时间为15.0s,采用快速求解算法完成一次测量平均测量时间为0.4s,前者测量时间是后者的38倍,直接说明快速求解算法测量速度相对于传统算法得到很大的提高,验证了快速求解算法的测量速度。
对实验室500J钕玻璃激光器在完成单次脉冲发射过程中激光材料热效应等效热焦距参量进行测量,测量间隔时间设置为0.5s,测量结果分布曲线见图 5。
由图 5可知,等效热焦距参量随时间快速变化,在脉冲发射后10s内,等效热焦距参量由-158.4m快速减小到-3400m然后变为2400m后再次快速减小到293.3m;10s以后等效热焦距变换相对缓慢,逐渐减小至130m后逐渐增大,到50s时增大到165m。从测量结果知,采用快速求解算法将测量时间间隔设置为0.5s得到的测量结果很好地反映了脉冲发射后等效热焦距参量的变化过程,从而证明了快速求解算法对激光材料热效应等效热焦距参量测量的适用性。