Advanced Search
ZHANG Wei, XU Qiang, XIE Xiumin, DENG Jie, QIN Wenzhi, HU Weiying, CHEN Jian, SONG Haizhi. Progress of InGaAs nanowire avalanche focal plane detectors[J]. LASER TECHNOLOGY, 2021, 45(1): 105-108. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.018
Citation: ZHANG Wei, XU Qiang, XIE Xiumin, DENG Jie, QIN Wenzhi, HU Weiying, CHEN Jian, SONG Haizhi. Progress of InGaAs nanowire avalanche focal plane detectors[J]. LASER TECHNOLOGY, 2021, 45(1): 105-108. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.018

Progress of InGaAs nanowire avalanche focal plane detectors

More Information
  • Received Date: December 09, 2019
  • Revised Date: March 17, 2020
  • Published Date: January 24, 2021
  • Photodetectors based on InGaAs nanowires have been widely studied due to their excellent properties. The detection mechanism, material structure, device performance and current research status of InGaAs nanowire photodetectors were reviewed. The key technologies, such as the structure design of InGaAs nanowire avalanche focal plane detector, the precise growth of nanowire materials, the interface and defect control of nanowire materials, and the preparation process of nanowire avalanche focal plane devices were discussed. On this basis, the prospect of developing high photon detection efficiency, low noise and high gain InGaAs nanowire avalanche focal plane detector was prospected.
  • [1]
    JUNG C S, KIM H S, JUNG G B, et al. Composition and phase tuned InGaAs alloy nanowires[J]. The Journal of Physical Chemistry, 2011, C115(16):7843-7850. DOI: 10.1021/jp2003276
    [2]
    FARRELL A C, MENG X, REN D K, et al. InGaAs-GaAs nanowire avalanche photodiodes toward single-photon detection in free-running mode[J]. Nano Letters, 2019, 19(1):582-590. DOI: 10.1021/acs.nanolett.8b04643
    [3]
    TAN H. Synthesis and optoelectronic properties of InGaAs nanostructures[D]. Changsha: Hunan University, 2015: 25-26(in Chinese).
    [4]
    TOMIOKA K, YOSHIMURA M, FUKUI T. A Ⅲ-Ⅴ nanowire channel on silicon for high-performance vertical transistors[J]. Nature, 2012, 488(7410):189-192. DOI: 10.1038/nature11293
    [5]
    XU Y H, SONG B, CHEN X F, et al. Application of micro near infrared spectrometer in measuring sugar content of apple[J].Laser Technology, 2019, 43(6):735-740(in Chinese).
    [6]
    ZHANG J L, XIN M, FAN L L, et al. Monitoring systems for skin flap transplantation based on near infrared spectroscopy[J]. Laser Technology, 2020, 44(1):91-95(in Chinese).
    [7]
    YANG T, HERTENBERGER S, MORKOTTER S, et al. Size, composition, and doping effects on In(Ga)As nanowire/Si tunnel diodes probed by conductive atomic force microscopy[J]. Applied Physics Letters, 2012, 101(9):233102. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6373935
    [8]
    ZHANG W F, ZHANG R L, ZHAO N Sh, et al. Development progress of InGaAs short-wave infrared plane arrays[J]. Infrared Technology, 2012, 34(6): 361-365(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HWJS201206012.htm
    [9]
    PAN J X, YI Sh Zh, ZHOU H Y. InGaAs shortwave infrared detector[J]. Infrared and Laser Engineering, 2007, 36(s1):202-205(in Chinese).
    [10]
    YAZAWA M, KOGUCHI M, HIRUMA K. Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates[J]. Applied Physics Letters, 1991, 58(10): 1080-1082. DOI: 10.1063/1.104377
    [11]
    LOGEESWARAN V J, SARKAR A, ISLAM M S, et al. A 14-ps full width at half maximum high-speed photoconductor fabricated with intersecting InP nanowires on an amorphous surface[J]. Applied Physics, 2008, A91(1):1-5. DOI: 10.1007/s00339-007-4394-x
    [12]
    SVENSSON J, ANTTU N, VAINORIUS N, et al. Diameter-depen-dent photocurrent in InAsSb nanowire infrared photodetectors[J]. Nano Letters, 2013, 13(4):1380-1385. DOI: 10.1021/nl303751d
    [13]
    WALLENTIN J, ANTTU N, ASOLI D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit[J]. Science, 2013, 339(6123):1057-1060. DOI: 10.1126/science.1230969
    [14]
    DAI X, ZHANG S, WANG Z L, et al. GaAs/AlGaAs nanowire photodetector[J]. Nano Letters, 2014, 14 (5):2688-2693. DOI: 10.1021/nl5006004
    [15]
    LIU Z, LUO T, LIANG B, et al. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared [J]. Nano Research, 2013, 6(11):775-783. DOI: 10.1007/s12274-013-0356-0
    [16]
    REN P Y, HU W, ZHANG Q L, et al. Band-selective infrared photodetectors with complete-composition-range InAsxPl-x alloy nano-wires[J]. Advanced Materials, 2014, 26(44):7444-7449. DOI: 10.1002/adma.201402945
    [17]
    FANG H H, HU W D, WANG P, et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire[J]. Nano Letters, 2016, 16(10):6416-6424. DOI: 10.1021/acs.nanolett.6b02860
    [18]
    TAN H, FAN C, MA L, et al. Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors[J]. Nano-Micro Letters, 2016, 8(1):29-35. http://d.wanfangdata.com.cn/Periodical/wnkb-e201601004
  • Cited by

    Periodical cited type(1)

    1. 陈梦强,杨家志,于广旺,沈洁. 基于机器学习的复杂环境下APD最优偏置电压补偿方法. 实验室研究与探索. 2023(01): 147-152 .

    Other cited types(2)

Catalog

    Article views (6) PDF downloads (4) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return