Citation: | ZHANG Wei, XU Qiang, XIE Xiumin, DENG Jie, QIN Wenzhi, HU Weiying, CHEN Jian, SONG Haizhi. Progress of InGaAs nanowire avalanche focal plane detectors[J]. LASER TECHNOLOGY, 2021, 45(1): 105-108. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.018 |
[1] |
JUNG C S, KIM H S, JUNG G B, et al. Composition and phase tuned InGaAs alloy nanowires[J]. The Journal of Physical Chemistry, 2011, C115(16):7843-7850. DOI: 10.1021/jp2003276
|
[2] |
FARRELL A C, MENG X, REN D K, et al. InGaAs-GaAs nanowire avalanche photodiodes toward single-photon detection in free-running mode[J]. Nano Letters, 2019, 19(1):582-590. DOI: 10.1021/acs.nanolett.8b04643
|
[3] |
TAN H. Synthesis and optoelectronic properties of InGaAs nanostructures[D]. Changsha: Hunan University, 2015: 25-26(in Chinese).
|
[4] |
TOMIOKA K, YOSHIMURA M, FUKUI T. A Ⅲ-Ⅴ nanowire channel on silicon for high-performance vertical transistors[J]. Nature, 2012, 488(7410):189-192. DOI: 10.1038/nature11293
|
[5] |
XU Y H, SONG B, CHEN X F, et al. Application of micro near infrared spectrometer in measuring sugar content of apple[J].Laser Technology, 2019, 43(6):735-740(in Chinese).
|
[6] |
ZHANG J L, XIN M, FAN L L, et al. Monitoring systems for skin flap transplantation based on near infrared spectroscopy[J]. Laser Technology, 2020, 44(1):91-95(in Chinese).
|
[7] |
YANG T, HERTENBERGER S, MORKOTTER S, et al. Size, composition, and doping effects on In(Ga)As nanowire/Si tunnel diodes probed by conductive atomic force microscopy[J]. Applied Physics Letters, 2012, 101(9):233102. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6373935
|
[8] |
ZHANG W F, ZHANG R L, ZHAO N Sh, et al. Development progress of InGaAs short-wave infrared plane arrays[J]. Infrared Technology, 2012, 34(6): 361-365(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HWJS201206012.htm
|
[9] |
PAN J X, YI Sh Zh, ZHOU H Y. InGaAs shortwave infrared detector[J]. Infrared and Laser Engineering, 2007, 36(s1):202-205(in Chinese).
|
[10] |
YAZAWA M, KOGUCHI M, HIRUMA K. Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates[J]. Applied Physics Letters, 1991, 58(10): 1080-1082. DOI: 10.1063/1.104377
|
[11] |
LOGEESWARAN V J, SARKAR A, ISLAM M S, et al. A 14-ps full width at half maximum high-speed photoconductor fabricated with intersecting InP nanowires on an amorphous surface[J]. Applied Physics, 2008, A91(1):1-5. DOI: 10.1007/s00339-007-4394-x
|
[12] |
SVENSSON J, ANTTU N, VAINORIUS N, et al. Diameter-depen-dent photocurrent in InAsSb nanowire infrared photodetectors[J]. Nano Letters, 2013, 13(4):1380-1385. DOI: 10.1021/nl303751d
|
[13] |
WALLENTIN J, ANTTU N, ASOLI D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit[J]. Science, 2013, 339(6123):1057-1060. DOI: 10.1126/science.1230969
|
[14] |
DAI X, ZHANG S, WANG Z L, et al. GaAs/AlGaAs nanowire photodetector[J]. Nano Letters, 2014, 14 (5):2688-2693. DOI: 10.1021/nl5006004
|
[15] |
LIU Z, LUO T, LIANG B, et al. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared [J]. Nano Research, 2013, 6(11):775-783. DOI: 10.1007/s12274-013-0356-0
|
[16] |
REN P Y, HU W, ZHANG Q L, et al. Band-selective infrared photodetectors with complete-composition-range InAsxPl-x alloy nano-wires[J]. Advanced Materials, 2014, 26(44):7444-7449. DOI: 10.1002/adma.201402945
|
[17] |
FANG H H, HU W D, WANG P, et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire[J]. Nano Letters, 2016, 16(10):6416-6424. DOI: 10.1021/acs.nanolett.6b02860
|
[18] |
TAN H, FAN C, MA L, et al. Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors[J]. Nano-Micro Letters, 2016, 8(1):29-35. http://d.wanfangdata.com.cn/Periodical/wnkb-e201601004
|
1. |
陈梦强,杨家志,于广旺,沈洁. 基于机器学习的复杂环境下APD最优偏置电压补偿方法. 实验室研究与探索. 2023(01): 147-152 .
![]() |