Advanced Search
ZHANG Yanhong, LU Tengfei, LIU Yongxin, CHEN Ziyang, SUN Shunhong. Intensities of non-uniformly polarized beams in the oceanic turbulence[J]. LASER TECHNOLOGY, 2020, 44(3): 310-314. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.007
Citation: ZHANG Yanhong, LU Tengfei, LIU Yongxin, CHEN Ziyang, SUN Shunhong. Intensities of non-uniformly polarized beams in the oceanic turbulence[J]. LASER TECHNOLOGY, 2020, 44(3): 310-314. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.007

Intensities of non-uniformly polarized beams in the oceanic turbulence

More Information
  • Received Date: May 13, 2019
  • Revised Date: June 20, 2019
  • Published Date: May 24, 2020
  • In order to study the intensity characteristics of non-uniformly polarized beams in ocean turbulence, the intensity distribution of the non-uniformly polarized (NUP) beams propagating in the oceanic turbulence was obtained by using the extended Huygens-Fresnel diffraction integral formula. The intensity characteristics of the non-uniformly polarized beams propagating in the seawater were investigated in great detail. It is found that the larger the parameters n and K of the non-uniformly polarized beam are, the more obvious the intensity distribution deviates from the Gaussian distribution. However, with the increase of the propagation distance in the ocean, the intensity distribution returns to the Gaussian distribution under the influence of the oceanic turbulence. In addition, the results also show that the larger the χT is, or the smaller the ε is, or the larger the w is, the more the intensity distribution tends to be Gaussian distribution. The research results have potential application value in ocean optical communication and imaging.
  • [1]
    KOROTKOVA O, FARWELL N. Effect of oceanic turbulence on polarization of stochastic beams[J]. Optics Communications, 2011, 284(7): 1740-1746. DOI: 10.1016/j.optcom.2010.12.024
    [2]
    SHCHEPAKINA E, FARWELL N, KOROTKOVA O. Spectral changes in stochastic light beams propagating in turbulent ocean[J]. Applied Physics, 2011, B105(2): 415-420. DOI: 10.1007/s00340-011-4626-9
    [3]
    FU W Y, ZHANG H M. Propagation properties of partially coherent radially polarized doughnut beam in turbulent ocean[J]. Optics Communications, 2013, 304: 11-18. DOI: 10.1016/j.optcom.2013.03.029
    [4]
    FU W Y, ZHANG H M, ZHENG X R. Propagation characteristics of multi-gauss-schell model beams in ocean turbulence[J]. Chinese Journal of Lasers, 2015, 42(s1): 113002(in Chinese). DOI: 10.3788/CJL201542.s113002
    [5]
    TANG M M, ZHAO D M. Propagation of radially polarized beams in the oceanic turbulence[J]. Applied Physics, 2013, B111(4): 665-670. http://www.tandfonline.com/servlet/linkout?suffix=CIT0013&dbid=16&doi=10.1080%2F09500340.2017.1404652&key=10.1007%2Fs00340-013-5394-5
    [6]
    XU J, TANG M M, ZHAO D M. Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence[J]. Optics Communications, 2014, 331: 1-5. DOI: 10.1016/j.optcom.2014.05.053
    [7]
    XU J, ZHAO D M. Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence[J]. Optics & Laser Technology, 2014, 57: 189-193. http://cn.bing.com/academic/profile?id=e3b6d7f7ae57cb73b3393cb4ad2c67ad&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    LU L, JI X, LI X, et al. Influence of oceanic turbulence on propagation characteristics of Gaussian array beams[J]. Optik, 2014, 125(24):7154-7161. DOI: 10.1016/j.ijleo.2014.07.113
    [9]
    YANG T, JI X L, LI X Q. Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence[J]. Acta Physica Sinica, 2015, 64(20): 204206 (in Chi-nese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201520023
    [10]
    PU H, JI X L, YANG T. Spatial coherence of partially coherent annular beams in ocean turbulence[J]. Acta Optica Sinica, 2015, 35(s1):101002 (in Chinese). DOI: 10.3788/AOS201535.s101002
    [11]
    HUANG Y, HUANG P, WANG F, et al. The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite-Gaussian linear array beams[J]. Optics Communications, 2015, 336:146-152. DOI: 10.1016/j.optcom.2014.09.055
    [12]
    XU K T, YUAN Y Sh, FENG X, et al. Propagation properties of partially coherent flat-topped beam array in oceanic turbulence[J]. Laser Technology, 2015, 39(6): 877-884(in Chinese). http://cn.bing.com/academic/profile?id=fa7f72a00d0eec03b879bf7e63980eae&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    JIANG Q Ch, SU Y L, NIE H X, et al. Propagation characteristics of Hermite-Gaussian beam in saturable nonlinear media[J]. Laser Technology, 2018, 42(1): 141-144(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201801028
    [14]
    LIU Y X, CHEN Z Y, PU J X. Propagation of stochastic electromagnetic high-order Bessel-Gaussian beams in the oceanic turbulence[J]. Acta Physica Sinica, 2017, 66(12): 124205(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201712018
    [15]
    LIU D J, WANG Y Ch. Evolution properties of a radial phased-locked partially coherent Lorentz-Gauss array beam in oceanic turbulence[J]. Optics & Laser Technology, 2016, 103: 33-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ae4115dd63239afdfc319d995700e1a6
    [16]
    LIU D J, YIN H M, WANG G Q, et al. Propagation of partially coherent Lorentz-Gauss vortex beam through oceanic turbulence[J]. Applied Optics, 2017, 56(31): 8785- 8792. DOI: 10.1364/AO.56.008785
    [17]
    NIU Ch J, LU F, HAN X E. Propagation properties of gaussian array beams transmitted in oceanic turbulence simulated by phase screen method[J]. Acta Optica Sinica, 2018, 36(6): 0601004(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201806004
    [18]
    GORI F, SANTARSIERO M, BORGHI R, et al. Use of the van Cittert-ernike theorem for partially polarized sources[J]. Optics Letters, 2000, 25(17): 1291-1293. DOI: 10.1364/OL.25.001291
    [19]
    PU J X, LU B. Focal shifts in focused nonuniformly polarized beams[J]. Journal of The Optical Society of America, 2001, A18(11): 2760-2766. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=747f5b94dc514c2a33f9942ce928ae00
    [20]
    WANG T, PU J X. Propagation of non-uniformly polarized beams in a turbulent atmosphere[J]. Optics Communications, 2008, 281(14): 3617-3622. DOI: 10.1016/j.optcom.2008.03.081
    [21]
    NIKISHOV V V, NIKISHOV V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1):82-98. DOI: 10.1615/InterJFluidMechRes.v27.i1.70
    [22]
    GORI F, SANTARSIERO M, BORGHI R, et al. The irradiance of partially polarized beams in a scalar treatment[J]. Optics Communications, 1999, 163(4/6): 159-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=690db99b4452d96714b12659364602b1
  • Cited by

    Periodical cited type(9)

    1. 孔彦坤,邓伟,金国忠,雷基林,陈丽琼,贾德文. 36MnVS4和46MnVS5连杆裂解性能差异性研究及质量缺陷分析. 中国机械工程. 2024(06): 1103-1111+1119 .
    2. 刘友健,雷智洪,吴俊伟,陈燕,纪轩荣. 超快激光制备高频1-3型PIN-PMN-PT复合材料超声换能器. 压电与声光. 2023(02): 288-293 .
    3. 王冠,陈国华,诸杰煜,汪春辉. 激光加工工艺参数对36MnVS4连杆切槽质量影响研究. 激光杂志. 2023(08): 198-205 .
    4. 林晓平,王冠,张冲,汪春辉,刘赞丰,张雅文. 光纤激光垂直加工连杆裂解槽装备设计. 组合机床与自动化加工技术. 2022(03): 134-137 .
    5. 张冲,王冠,刘赞丰,张雅文. 激光微加工对Ti6Al4V表面形貌及润湿性影响的研究. 激光技术. 2021(01): 31-36 . 本站查看
    6. 赵士伟,张海云,李志永,赵玉刚,张晋烨. 激光参量对血管支架切缝形貌及粗糙度的影响. 激光技术. 2020(03): 299-303 . 本站查看
    7. 寇淑清,修亭亭,金文明,赵勇,姚娟. 后桥主减速器壳体轴承座材料裂解性能数值分析. 华南理工大学学报(自然科学版). 2019(07): 121-127+135 .
    8. 郭树霞. 改进蚁群算法下激光切割加工工艺优化研究. 机电信息. 2019(24): 94-95 .
    9. 赵三军,赵水,张志强,贾斌,陈绍磊,周玉梅,姜冰,吴军. 激光切割8 mm厚锰钢板的工艺试验研究. 制造技术与机床. 2019(09): 70-73 .

    Other cited types(7)

Catalog

    Article views (8) PDF downloads (6) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return