Advanced Search
ZHANG Chong, WANG Guan, LIU Zanfeng, ZHANG Yawen. The effects of laser micromachining on surface morphology and wettability of Ti6Al4V[J]. LASER TECHNOLOGY, 2021, 45(1): 31-36. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.006
Citation: ZHANG Chong, WANG Guan, LIU Zanfeng, ZHANG Yawen. The effects of laser micromachining on surface morphology and wettability of Ti6Al4V[J]. LASER TECHNOLOGY, 2021, 45(1): 31-36. DOI: 10.7510/jgjs.issn.1001-3806.2021.01.006

The effects of laser micromachining on surface morphology and wettability of Ti6Al4V

More Information
  • Received Date: January 12, 2020
  • Revised Date: March 17, 2020
  • Published Date: January 24, 2021
  • In order to process different microstructures on the Ti6Al4V surface and change its wettability to make the surface superhydrophobic, the nanosecond fiber pulsed laser was used to micro-fabricate the Ti6Al4V surface. The effects of the pulse energy density and the scanning interval on the lattice surface morphology and wettability of 3-D microarrays, linear arrays, and surface microstructures were investigated. The results show that the pulse energy and scanning interval affected the surface morphology parameters Sa, Sd, among which, the Sa and Sd of the rid structure were affected the most, followed by the linear array structure, while the lattice structure affected the smallest. After Ti6Al4V was processed by laser, spontaneous transition from superhydrophilic to hydrophobic or even superhydrophobic will occur on the surface. Microstructures processed with different pulse energies and scanning intervals had different degrees of surface wettability improvement, among which the grid structure had the best improvement on the surface wettability, followed by the linear array, and the worst was the lattice; The maximum and minimum contact angles of the grid, linear array, and lattice structure are 165 °, 160.5 °, 142.4 °; 132.9 °, 97 °, 94.6 °, and the surface parameters Sa and Sd with the maximum contact angle are 0.97μm, 1.38; 1.62μm, 1.04; 4.14μm, 2.39, respectively. This research has certain reference significance for improving the surface wettability of Ti6Al4V.
  • [1]
    BAI R G. Application and prospect of vanadium & titanium new material[J]. Hebei Metallurgy, 2019(3): 1-8(in Chinese).
    [2]
    CAI J M, LI Zh, TIAN F, et al. Manufacture of high-performance titanium alloy dual-performance integral impeller for advanced aero engines[J]. Aeronautical Manufacturing Technology, 2019, 62(19):34-40(in Chinese).
    [3]
    ZHANG H. Titanium is significant in oceaneering projects[J]. China Titanium Industry, 2015(4): 46-47(in Chinese).
    [4]
    BAI P F, SONG Sh L, ZOU Zh Y, et al. Corrosion and protection of metals in the marine environment[J]. Shanxi Chemical Industry, 2015, 35(5): 28-29(in Chinese).
    [5]
    WANG Q, CHEN G X. Construction and application of bionic superhydrophobic materials[J]. Imaging Science and Photochemistry, 2019, 37(3): 255(in Chinese).
    [6]
    LI Sh, QIAN Ch L, LI D, et al. Frost evolution behavior and drainage characteristics of superhydrophobic surface[J]. Journal of Refrigeration, 2020(1): 1-8(in Chinese).
    [7]
    YE X, WANG Z, ZHOU M, et al. Research of surface micro-structure and anti-coagulant property of pyrolytic carbon induced by laser[J]. Laser Technology, 2013, 37(5): 696-699(in Chinese). http://d.wanfangdata.com.cn/Periodical_jgjs201305029.aspx
    [8]
    KHALIFEH S, BURLEIGH T D. Super-hydrophobic stearic acid layer formed on anodized high purified magnesium for improving corrosion resistance of bioabsorbable implants[J]. Journal of Magnesium and Alloys, 2018, 6(4):327-336. http://www.sciencedirect.com/science/article/pii/S2213956718300537
    [9]
    OLIVO J, CUEVAS M. Enhanced energy transfer via graphene-coated wire surface plasmons[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 239: 106655. http://www.sciencedirect.com/science/article/pii/S0022407319304911
    [10]
    LIU Y J, LIU N, JING Y N, et al. Surface design of durable and recyclable superhydrophobic materials for oil/water separation[J]. Colloids and Surfaces, 2019, A567:128-138. http://www.sciencedirect.com/science/article/pii/S0927775719300470
    [11]
    LI J K. Study on fabricating technology for film microstructure based on ultraviolet nanosecond laser pulse[D]. Tianjin: Tianjin University, 2018: 32-57(in Chinese).
    [12]
    ZHANG Ch, WANG G, YANG Zh G, et al. Optimization of technology parameters for fracture splitting grooves of connecting rods fabricated by pulse fiber laser[J]. Laser Technology, 2018, 42(3): 422-426(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201803025.htm
    [13]
    DING Ch M. Application of laser processing technology in construction machinery manufacturing[J]. New Technology & New Products of China, 2019(21): 66-67(in Chinese).
    [14]
    GU J, YE X, FAN Zh M, et al. Progress in fabrication of biomimetic superhydrophobic surfaces by laser etching[J]. Laser Technology, 2019, 43(4): 57-63(in Chinese).
    [15]
    KRYACHKO Y. Novel approaches to microbial enhancement of oil recovery[J]. Journal of Biotechnology, 2018, 6:118-123. http://europepmc.org/abstract/MED/29273562
    [16]
    CHEN T, HU Ch Ch, FANG Y, et al. A novel method of measuring the contact angle of droplets[J]. Laser & Optoelectronics Progress, 2017, 54(8): 82402(in Chinese).
    [17]
    ZHU Y. Effect of surface micro-features on droplet wetting state and gas-liquid interface stability[D]. Beijing: Tsinghua University, 2017: 17-29(in Chinese).
    [18]
    LI J Y, LU Sh X, XU W G, et al. Fabrication of stable 000000Ni-AlNi-AlO superhydrophobic surface on aluminum substrate for self-cleaning, anti-corrosive and catalytic performan[J]. Journal of Materials Science, 2018, 53(2): 1097-1109. http://smartsearch.nstl.gov.cn/paper_detail.html?id=cf87ca7291b61e18b4f1535db32a5d9e
    [19]
    GENG W Y, HU A M, LI M. Super-hydrophilicity to super-hydrophobicity transition of a surface with Ni micro-nano cones array[J]. Applied Surface Science, 2012, 263(9): 821-824. http://www.sciencedirect.com/science/article/pii/S0169433212015140
  • Related Articles

    [1]JIN Jie, ZHANG Chong, ZHANG Yongkang, ZHU Ran. Effect of laser ablation crater array microstructure on bonding strength of 7075-T6[J]. LASER TECHNOLOGY, 2022, 46(2): 182-187. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.006
    [2]YOU Chuanchuan, XIAO Huaqiang, REN Lirong, ZHAO Xinxin. Microstructure and properties of laser cladding Ti-Al-N composite coating on TC4 surface[J]. LASER TECHNOLOGY, 2021, 45(5): 585-589. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.008
    [3]CHEN Jintang, GUO Ziying, WANG Chenyong, TAN Chaolin, HU Yingning, LIU Jianye. Research status of Ti-6Al-4V manufactured by selective laser melting for medical device applications[J]. LASER TECHNOLOGY, 2020, 44(3): 288-298. DOI: 10.7510/jgjs.issn.1001-3806.2020.03.004
    [4]YANG Jinde, ZHOU Wangfan, YANG Tao, LIU Fanfan, REN Xudong. Nanocrystallization of Ti-6Al-4V alloy by multiple laser shock processing[J]. LASER TECHNOLOGY, 2017, 41(5): 754-758. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.027
    [5]YANG Tao, ZHOU Wangfan, YANG Jinde, HOU Lihua, REN Xudong. Effect of laser shot peening on high temperature property of Ti-6Al-4V titanium alloy[J]. LASER TECHNOLOGY, 2017, 41(4): 526-530. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.014
    [6]HOU Lihua, REN Xudong, ZHOU Wangfan, DAI Wenjie, XU Shidong, HUANG Jingjing. Change of surface integrity of Ti-6Al-4V titanium alloy by laser shock processing at middle and high temperatures[J]. LASER TECHNOLOGY, 2016, 40(2): 288-291. DOI: 10.7510/jgjs.issn.1001-3806.2016.02.029
    [7]SHI Bofei, ZHANG Anfeng, QI Baolu, LI Dichen. Influence of heat accumulation on microstructure and property of Ti-6Al-4V in laser direct forming[J]. LASER TECHNOLOGY, 2016, 40(1): 29-32. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.007
    [8]Xiang Dong, Xu Bin, Liu Kegao. Microstructures and properties of laser clad ceramic layers on W6Mo5Cr4V2 high speed steel surface[J]. LASER TECHNOLOGY, 2003, 27(5): 434-436.
    [9]Wu Wan-liang, Huang Wen-rong, . Microstructure of laser clad Ti+TiC powders on Ti-6Al-4V alloy substrate[J]. LASER TECHNOLOGY, 2003, 27(4): 307-310.
    [10]Wang Zhong-ke, Ye He-qing, Xu De-sheng, Zheng Qi-guang, Wang Tao, Gu Jian-hui. Microstructure and properties of hard alloy coating of laser cladding[J]. LASER TECHNOLOGY, 2001, 25(4): 302-305.
  • Cited by

    Periodical cited type(3)

    1. 金捷,张冲,张永康,朱然. 激光烧蚀坑阵列微结构对7075-T6粘接强度的影响. 激光技术. 2022(02): 182-187 . 本站查看
    2. 李玥,王燕. 飞秒激光加工Ag-TiO_2微纳结构及其光催化性能研究. 激光技术. 2022(02): 163-168 . 本站查看
    3. 李峰西,索海生,邢振宏,高凯. 高速激光微加工在二维码打标行业的高速加工应用. 黑龙江科学. 2022(14): 51-54 .

    Other cited types(5)

Catalog

    Article views (11) PDF downloads (5) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return