[1]
|
DANYLYUK S, LOOSEN P, BERGMANN K, et al. Scalability limits of Talbot lithography with plasma-based extreme ultraviolet sources[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2013, 12(3): 033002. doi: 10.1117/1.JMM.12.3.033002 |
[2]
|
ZHU Q Sh, YAMADA J, KISHI N, et al. Investigation of the dynamics of the Z-pinch imploding plasma for a laser-assisted discharge-produced Sn plasma EUV source[J]. Journal of Physics, 2011, D44(14):5203. |
[3]
|
SCHRIEVER G, SEMPREZ O, JONKERS J, et al. Laser produced plasma versus laser assisted discharge plasma: Physics and technology of extreme ultraviolet lithography light sources[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2012, 11(2):021104. |
[4]
|
TERAMOTO Y, SANTOS B, MERTENS G, et al. High-radiance LDP source: Clean, reliable, and stable EUV source for mask inspection[R]. San Jose, USA: BLV Licht- und Vakuumtechnik GmbH, 2016: 1- 8. |
[5]
|
TOBIN I. Optical and EUV studies of laser triggered Z-pinch discharges[D]. Dublin, Ireland: Trinity College, 2014: 10-50. |
[6]
|
BORISOV V M, ELTSOV A V, IVANOV A S, et al. EUV source using Xe and Sn discharge plasma[J]. Journal of Physics, 2004, D37(32): 3254-3265. |
[7]
|
YOSHIOKA M, TERAMOTO Y, JONKERS J, et al. Tin DPP source collector module (SoCoMo) ready for integration into beta scanner[R]. San Jose, USA: XTREME Technologies GmbH, 2011: 1- 9. |
[8]
|
TOBIN I, JUSCHKIN L, SIDELNIKOV Y, et al. Laser triggered Z-pinch broadband extreme ultraviolet source for metrology[J]. Applied Physics Letters, 2013, 102 (20): 203504. doi: 10.1063/1.4807172 |
[9]
|
LI X Q. Research of 13.5nm extreme ultraviolet radiation from tin plasma produced by laser-assisted discharge[D]. Harbin: Harbin Institute of Technology, 2014: 100-300(in Chinese). |
[10]
|
LIM S, KAMOHARA T, HOSSEINI S H R, et al. Dependence of current rise time on laser-triggered discharge plasma[J]. Journal of Physics, 2016, D49(29):5207. |
[11]
|
BEYENE G A, TOBIN I, JUSCHKIN L, et al. Laser-assisted vacuum arc extreme ultraviolet source: A comparison of picosecond and nanosecond laser triggering[J]. Journal of Physics, 2016, D49(22):5201. |
[12]
|
TERAMOTO Y, SANTOS B, MERTENS G, et al. High-radiance LDP source for mask inspection application[R]. San Jose, USA: Ushio, Inc, 2015: 1-9. |
[13]
|
ALKHIMOVA M A, ANANIN O B, BOGDANOV G S, et al. The source of soft X-ray based on low energy vacuum spark[J]. Physics Procedia, 2015, 71:181-186. doi: 10.1016/j.phpro.2015.08.347 |
[14]
|
SHAIM M H A, ELSAYED-ALI H E. Spark discharge coupled laser multicharged ion source[J]. Review of Scientific Instruments, 2015, 86(7):073304. doi: 10.1063/1.4923457 |
[15]
|
KOROBKIN Y V, PAPERNY V L, ROMANOV I V, et al. Control of parameters of micropinches formed in current-carrying plasma jet[J]. Physics Letters, 2008, A37(2): 1292-1296. |
[16]
|
KOROBKIN Y V, ROMANOV I V, RUPASOV A A, et al. Vacuum discharge instability at laser ignition of a cathode spot[J]. Technical Physics, 2005, 50(11): 39-44. |
[17]
|
KOROBKIN Y V, PAPERNY V L, ROMANOV I V, et al. Micropinches in laser induced moderate power vacuum discharge[J]. Plasma Physics and Controlled Fusion, 2008, 50(6):065002. doi: 10.1088/0741-3335/50/6/065002 |
[18]
|
ROMANOV I V, KOROBKIN Y V, PAPERNY V L, et al. Observation of micropinch formation in cathode jet of a low-power laser-induced vacuum discharge[J]. Physics of Plasmas, 2016, 23(2):023112. doi: 10.1063/1.4942029 |
[19]
|
ROMANOV I V, TSYGVINTSEV I P, PAPERNY V L, et al. Influence of the laser plasma-expansion specific on a cathode jet formation and the current stability in a laser-ignited vacuum discharge[J]. Physics of Plasmas, 2018, 25(8):083107. doi: 10.1063/1.5037001 |
[20]
|
TSYGVINTSEV I P, KRUKOVSKIY A Y, GASILOV V A, et al. Numerical modeling of a pinch in a vacuum diode with laser ignition[J]. Mathematical Models and Computer Simulations, 2016, 8(5): 595-605. doi: 10.1134/S2070048216050136 |
[21]
|
LIN H Z, WANG Y, HE Zh H, et al. Experimental study on spectrum and conduction properties of laser triggered vacuum switch[J]. Laser Technology, 2017, 41(1):24-28(in Chinese). |
[22]
|
YANG R Q, WANG X B, LAN H. Study on expansion characteristics of tin plasma plume produced by CO2 laser and Nd:YAG laser[J]. Laser Technology, 2016, 40(2):223-226(in Chinese). |
[23]
|
LU P, KATSUKI S, TOMIMARU N, et al. Dynamic characteristics of laser-assisted discharge plasmas for extreme ultraviolet light source[J]. Japanese Journal of Applied Physics, 2010, 49:096202. doi: 10.1143/JJAP.49.096202 |
[24]
|
MOORTI A, RAO S B, NAIK P A, et al. Cathode plasma jet pinching and intense X-ray emission in a moderate-current laser-triggered vacuum discharge[J]. Transactions on Plasma Science, 2006, 34(5):2419-2425. doi: 10.1109/TPS.2006.883389 |
[25]
|
DONG H J, LIAO M F, ZOU J Y, et al. Collection and processing procedure of vacuum switches arc images[J]. Transactions of China Electrotechnical Society, 2007, 22(8):174-177(in Chinese). |
[26]
|
WU Y Q, DONG H J, TIAN X J, et al. Variations in area and shape of vacuum switching arc images[J]. Chinese Journal of Vacuum Science and Technology, 2010, 30(6):604-607(in Chinese). |
[27]
|
HUANG B, TOMIZUKA T, XIE B, et al. Simulation and mitigation of the magneto-Rayleigh-Taylor instabilities in Z-pinch gas discharge extreme ultraviolet plasma radiation sources[J]. Physics of Plasmas, 2013, 20(11):112113. doi: 10.1063/1.4835275 |
[28]
|
KRINBERG I A. Three models of vacuum arc plasma expansion in the absence and presence of a magnetic field[J]. Transactions on Plasma Science, 2005, 33(5):1548-1552. doi: 10.1109/TPS.2005.856475 |
[29]
|
ANDERS A. Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field[J]. Journal of Applied Physics, 2002, 91(8):4824-4832. doi: 10.1063/1.1459619 |