Advanced Search
WANG Junwu, WANG Xinbing, ZUO Duluo. Investigation of plume of laser-induced discharge plasma[J]. LASER TECHNOLOGY, 2020, 44(2): 173-177. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.006
Citation: WANG Junwu, WANG Xinbing, ZUO Duluo. Investigation of plume of laser-induced discharge plasma[J]. LASER TECHNOLOGY, 2020, 44(2): 173-177. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.006

Investigation of plume of laser-induced discharge plasma

More Information
  • Received Date: April 27, 2019
  • Revised Date: June 12, 2019
  • Published Date: March 24, 2020
  • In order to study the expansion characteristics of laser-induced discharge plasma (LDP), a set of extreme ultraviolet source for tin target discharge plasma based on pulsed CO2 laser was established. The plume was photographed by intensified charge-coupled device. 1-D vacuum arc model was used to explain the experimental results. The time-resolved plume images under different conditions were obtained by changing the discharge voltage and laser energy. The results show that, under the condition of 140mJ laser energy and 10kV discharge voltage, a stable discharge plasma was obtained. There is a corresponding relationship between the plume morphology and the current. It has undergone different stages of formation, expansion, contraction, re-expansion and dissipation. Discharge voltage and induced laser energy have effects on plume size, stability and formation time. This study is helpful to improve the stability of LDP source and the output power of extreme ultraviolet light.
  • [1]
    DANYLYUK S, LOOSEN P, BERGMANN K, et al. Scalability limits of Talbot lithography with plasma-based extreme ultraviolet sources[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2013, 12(3): 033002. DOI: 10.1117/1.JMM.12.3.033002
    [2]
    ZHU Q Sh, YAMADA J, KISHI N, et al. Investigation of the dynamics of the Z-pinch imploding plasma for a laser-assisted discharge-produced Sn plasma EUV source[J]. Journal of Physics, 2011, D44(14):5203. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8d0459c3c71a3c69e0cbd48e0dbda862
    [3]
    SCHRIEVER G, SEMPREZ O, JONKERS J, et al. Laser produced plasma versus laser assisted discharge plasma: Physics and technology of extreme ultraviolet lithography light sources[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2012, 11(2):021104.
    [4]
    TERAMOTO Y, SANTOS B, MERTENS G, et al. High-radiance LDP source: Clean, reliable, and stable EUV source for mask inspection[R]. San Jose, USA: BLV Licht- und Vakuumtechnik GmbH, 2016: 1- 8.
    [5]
    TOBIN I. Optical and EUV studies of laser triggered Z-pinch discharges[D]. Dublin, Ireland: Trinity College, 2014: 10-50.
    [6]
    BORISOV V M, ELTSOV A V, IVANOV A S, et al. EUV source using Xe and Sn discharge plasma[J]. Journal of Physics, 2004, D37(32): 3254-3265. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC026647848/
    [7]
    YOSHIOKA M, TERAMOTO Y, JONKERS J, et al. Tin DPP source collector module (SoCoMo) ready for integration into beta scanner[R]. San Jose, USA: XTREME Technologies GmbH, 2011: 1- 9.
    [8]
    TOBIN I, JUSCHKIN L, SIDELNIKOV Y, et al. Laser triggered Z-pinch broadband extreme ultraviolet source for metrology[J]. Applied Physics Letters, 2013, 102 (20): 203504. DOI: 10.1063/1.4807172
    [9]
    LI X Q. Research of 13.5nm extreme ultraviolet radiation from tin plasma produced by laser-assisted discharge[D]. Harbin: Harbin Institute of Technology, 2014: 100-300(in Chinese).
    [10]
    LIM S, KAMOHARA T, HOSSEINI S H R, et al. Dependence of current rise time on laser-triggered discharge plasma[J]. Journal of Physics, 2016, D49(29):5207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0a9980f7fd0d4b933d8cb4f208a764f3
    [11]
    BEYENE G A, TOBIN I, JUSCHKIN L, et al. Laser-assisted vacuum arc extreme ultraviolet source: A comparison of picosecond and nanosecond laser triggering[J]. Journal of Physics, 2016, D49(22):5201. DOI: 10.1088/0022-3727/49/22/225201/meta
    [12]
    TERAMOTO Y, SANTOS B, MERTENS G, et al. High-radiance LDP source for mask inspection application[R]. San Jose, USA: Ushio, Inc, 2015: 1-9.
    [13]
    ALKHIMOVA M A, ANANIN O B, BOGDANOV G S, et al. The source of soft X-ray based on low energy vacuum spark[J]. Physics Procedia, 2015, 71:181-186. DOI: 10.1016/j.phpro.2015.08.347
    [14]
    SHAIM M H A, ELSAYED-ALI H E. Spark discharge coupled laser multicharged ion source[J]. Review of Scientific Instruments, 2015, 86(7):073304. DOI: 10.1063/1.4923457
    [15]
    KOROBKIN Y V, PAPERNY V L, ROMANOV I V, et al. Control of parameters of micropinches formed in current-carrying plasma jet[J]. Physics Letters, 2008, A37(2): 1292-1296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80888298fea1570c52e709b1c6838cfe
    [16]
    KOROBKIN Y V, ROMANOV I V, RUPASOV A A, et al. Vacuum discharge instability at laser ignition of a cathode spot[J]. Technical Physics, 2005, 50(11): 39-44.
    [17]
    KOROBKIN Y V, PAPERNY V L, ROMANOV I V, et al. Micropinches in laser induced moderate power vacuum discharge[J]. Plasma Physics and Controlled Fusion, 2008, 50(6):065002. DOI: 10.1088/0741-3335/50/6/065002
    [18]
    ROMANOV I V, KOROBKIN Y V, PAPERNY V L, et al. Observation of micropinch formation in cathode jet of a low-power laser-induced vacuum discharge[J]. Physics of Plasmas, 2016, 23(2):023112. DOI: 10.1063/1.4942029
    [19]
    ROMANOV I V, TSYGVINTSEV I P, PAPERNY V L, et al. Influence of the laser plasma-expansion specific on a cathode jet formation and the current stability in a laser-ignited vacuum discharge[J]. Physics of Plasmas, 2018, 25(8):083107. DOI: 10.1063/1.5037001
    [20]
    TSYGVINTSEV I P, KRUKOVSKIY A Y, GASILOV V A, et al. Numerical modeling of a pinch in a vacuum diode with laser ignition[J]. Mathematical Models and Computer Simulations, 2016, 8(5): 595-605. DOI: 10.1134/S2070048216050136
    [21]
    LIN H Z, WANG Y, HE Zh H, et al. Experimental study on spectrum and conduction properties of laser triggered vacuum switch[J]. Laser Technology, 2017, 41(1):24-28(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201701006
    [22]
    YANG R Q, WANG X B, LAN H. Study on expansion characteristics of tin plasma plume produced by CO2 laser and Nd:YAG laser[J]. Laser Technology, 2016, 40(2):223-226(in Chinese).
    [23]
    LU P, KATSUKI S, TOMIMARU N, et al. Dynamic characteristics of laser-assisted discharge plasmas for extreme ultraviolet light source[J]. Japanese Journal of Applied Physics, 2010, 49:096202. DOI: 10.1143/JJAP.49.096202
    [24]
    MOORTI A, RAO S B, NAIK P A, et al. Cathode plasma jet pinching and intense X-ray emission in a moderate-current laser-triggered vacuum discharge[J]. Transactions on Plasma Science, 2006, 34(5):2419-2425. DOI: 10.1109/TPS.2006.883389
    [25]
    DONG H J, LIAO M F, ZOU J Y, et al. Collection and processing procedure of vacuum switches arc images[J]. Transactions of China Electrotechnical Society, 2007, 22(8):174-177(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dgjsxb200708032
    [26]
    WU Y Q, DONG H J, TIAN X J, et al. Variations in area and shape of vacuum switching arc images[J]. Chinese Journal of Vacuum Science and Technology, 2010, 30(6):604-607(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zkkx201006007
    [27]
    HUANG B, TOMIZUKA T, XIE B, et al. Simulation and mitigation of the magneto-Rayleigh-Taylor instabilities in Z-pinch gas discharge extreme ultraviolet plasma radiation sources[J]. Physics of Plasmas, 2013, 20(11):112113. DOI: 10.1063/1.4835275
    [28]
    KRINBERG I A. Three models of vacuum arc plasma expansion in the absence and presence of a magnetic field[J]. Transactions on Plasma Science, 2005, 33(5):1548-1552. DOI: 10.1109/TPS.2005.856475
    [29]
    ANDERS A. Ion flux from vacuum arc cathode spots in the absence and presence of a magnetic field[J]. Journal of Applied Physics, 2002, 91(8):4824-4832. DOI: 10.1063/1.1459619
  • Cited by

    Periodical cited type(2)

    1. 王均武,玄洪文,俞航航,王新兵,Vassily S.Zakharov. 激光诱导放电等离子体极紫外辐射的模拟. 物理学报. 2024(01): 264-271 .
    2. 王卫江,贾凯,房瑞娜,邢昊,黄云,张滢,马超群,王浟. 激光诱导等离子体辐射特性的研究综述. 激光技术. 2022(04): 499-510 . 本站查看

    Other cited types(1)

Catalog

    Article views (7) PDF downloads (9) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return