Advanced Search
WANG Weijiang, JIA Kai, FANG Ruina, XING Hao, HUANG Yun, ZHANG Ying, MA Chaoqun, WANG You. Review on radiation features of laser-induced plasma[J]. LASER TECHNOLOGY, 2022, 46(4): 499-510. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.010
Citation: WANG Weijiang, JIA Kai, FANG Ruina, XING Hao, HUANG Yun, ZHANG Ying, MA Chaoqun, WANG You. Review on radiation features of laser-induced plasma[J]. LASER TECHNOLOGY, 2022, 46(4): 499-510. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.010

Review on radiation features of laser-induced plasma

More Information
  • Received Date: July 26, 2021
  • Revised Date: September 22, 2021
  • Published Date: July 24, 2022
  • As a radiation source with the wide spectrum, laser-induced plasma can produce X-ray, ultraviolet, visible, infrared, terahertz, and microwave radiation. It has high practical value and can be used in astrophysics, inertial confinement fusion, biomedicine, materials science, spectral analyses, environmental engineering, information technology, ultrafast technology, lithography technology, imaging technology, radar technology, and semiconductor technology, etc. Up to now, most of the literatures about the radiation characteristics of laser-induced plasma concentrate on the interaction between lasers and matter in a certain wave band, while the mechanism of radiation production is not fully understood, and there is still a lack of comprehensive introductions of the researches on a wide spectrum. The radiation characteristics of laser-induced plasma are systematically classified from the point of view of both electromagnetic radiation spectra and radiation mechanisms in this review. The research results of relevant teams at home and abroad are summarized and analyzed, especially the physical relationship between plasma and spectral radiation is explored from different perspectives. The radiation characteristics of laser-induced plasma in various bands are introduced, and the related factors affecting the radiation are discussed. Finally, the research prospect of infrared band and terahertz band are prospected.
  • [1]
    BEILIS I I. Laser plasma generation and plasma interaction with ablative target[J]. Laser and Particle Beams, 2007, 25(1): 53-63. DOI: 10.1017/S0263034607070097
    [2]
    GIACOMO A D, DELL'AGLIO M, GAUDIUSO R, et al. Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas[J]. Spectrochimica Acta, 2012, B78: 1-19.
    [3]
    FREEMAN J R, HARILAL S S, DIWAKAR P K, et al. Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions[J]. Spectrochimica Acta, 2013, B87: 43-50.
    [4]
    CHAUDHARY K, RIZVI S Z H, ALI J. Laser-induced plasma and its applications[C]//Plasma Science and Technology-Progress in Physical States and Chemical Reaction. Durham, USA: Instrument Society of America, 2016: 259-291.
    [5]
    WANG X F, PACHTMAN A, XU Zh Zh, et al. Laser plasma X-ray emission from 5 to 200[J]. Acta Physica Sinica, 1990, 39(6): 922-926(in Chinese).
    [6]
    GIULIETTI D, GIZZI L A. X-ray emission from laser-produced plasmas[J]. Rivista Del Nuovo Cimento, 1998, 21(10): 1-89. DOI: 10.1007/BF02874624
    [7]
    CANNAVÒ A, TORRISI L, CECCIO G, et al. Characterization of X-ray emission from laser generated plasma[C]//Plasma Physics by Laser and Application. Paris, France: Edition Diffusion Press Science, 2018, 167: 03004.
    [8]
    KOROLIOV A, REKLAITIS J, VARSOCKAJA K, et al. X-ray pulse emission of alkali metal halide salts irradiated by femtosecond laser pulses[J]. Applied Physics, 2020, B126(144): 1-7.
    [9]
    LOKASANI R, ARAI G, KONDO Y, et al. Soft X-ray emission from molybdenum plasmas generated by dual laser pulses[J]. Applied Physics Letters, 2016, 109(19): 194103. DOI: 10.1063/1.4967310
    [10]
    WEGRZYNSKI Ł, BARTNIK A, WACHULAK P, et al. Laser-produced plasma soft X-ray source based on an aerosol target[J]. Phy-sics of Plasmas, 2020, 27(7): 073102. DOI: 10.1063/5.0005933
    [11]
    WU T, HIGASHIGUCHI T, LI B W, et al. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd ∶YAG laser pulses[J]. Journal of Physics, 2016, B49(3): 035001.
    [12]
    LI B W, OTSUKA T, SOKELL E, et al. Characteristics of laser produced plasmas of hafnium and tantalum in the 1-7 nm region[J]. The European Physical Journal, 2017, D71: 278.
    [13]
    YIN L, WANG H Ch, REAGAN B A, et al. 6.7-nm emission from Gd and Tb plasmas over a broad range of irradiation parameters using a single laser[J]. Physical Review Applied, 2016, 6(3): 034009. DOI: 10.1103/PhysRevApplied.6.034009
    [14]
    HARA H, ARAI G, KONDO Y, et al. Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas[J]. Applied Physics Express, 2016, 9(6): 066201. DOI: 10.7567/APEX.9.066201
    [15]
    HE J, WU T, YANG L. Study on ultraviolet radiation characteristics of pulse laser-induced hafnium plasma[J]. Laser & Optoelectronics Progress, 2020, 57(19): 191402(in Chinese).
    [16]
    ZHONG F Ch, DENG J, ZHANG Zh Q, et al. Characteristic of plasma X-ray emission generated by femtosecond and nanosecond laser pulses[J]. Acta Optica Sinica, 1999, 19(3): 364-368(in Ch-inese).
    [17]
    MURNANE M M, KAPTEYN H C, ROSEN M D, et al. Ultrafast X-ray pulses from laser-produced plasmas[J]. Science, 1991, 251(4993): 531-536. DOI: 10.1126/science.251.4993.531
    [18]
    CHEN Sh Sh, LI Y L, XU Zh Zh, et al. Soft X-ray emission from 1.06μm laser plasmas and its atomic number dependence[J]. Acta Optica Sinica, 1992, 12(1): 27-32(in Chinese).
    [19]
    RYAZANTSEV S N, SKOBELEV I Y, FILIPPOV E D, et al. Precise wavelength measurements of potassium He- and Li-like satellites emitted from the laser plasma of a mineral target[J]. Matter and Radiation at Extremes, 2021, 6(1): 014402. DOI: 10.1063/5.0019496
    [20]
    GUO Y B, PAN Sh F. Study of soft X-ray pulses from a repetitively laser-produce plasma[J]. Chinese Journal of Light Scattering, 1997, 9(1): 17-23(in Chinese).
    [21]
    PHUOC K T, ROUSSE A, PITTMAN M, et al. X-ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma[J]. Physical Review Le-tters, 2003, 91(19): 195001. DOI: 10.1103/PhysRevLett.91.195001
    [22]
    ZHAO T Z, BATSON T, HOU B, et al. Characterization of hard X-ray sources produced via the interaction of relativistic femtosecond laser pulses with metallic targets[J]. Applied Physics, 2019, B125(8): 1-9.
    [23]
    FILIPPOV E D, MAKAROV S S, BURDONOV K F, et al. Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field[J]. Scientific Reports, 2021, 11: 8180. DOI: 10.1038/s41598-021-87651-8
    [24]
    KRYGIER A, KEMP G E, COPPARI F, et al. Optimized continuum X-ray emission from laser-generated plasma[J]. Applied Physics Letters, 2020, 117(25): 251106. DOI: 10.1063/5.0033629
    [25]
    VERSOLATO O O. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography[J]. Plasma Sources Science and Technology, 2019, 27(7): 102923.
    [26]
    WU T, WANG X B, WANG Sh Y, et al. Characteristics of extreme ultraviolet emission from tin plasma using CO2 laser for lithography[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1729-1733(in Chinese).
    [27]
    SU M G, MIN Q, CAO S Q, et al. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model[J]. Scientific Reports, 2017, 7: 45212. DOI: 10.1038/srep45212
    [28]
    WANG J W, WANG X B, ZUO D L. Investigation of plume of laser-induced discharge plasma[J]. Laser Technology, 2020, 44(2): 173-177(in Chinese).
    [29]
    WANG J W, WANG X B, ZUO D L, et al. Characteristics of discharge and beyong extreme ultraviolet spectra of laser induced discharge gadolinium plasma[J]. Optics and Laser Technology, 2021, 138: 106940.
    [30]
    LI Zh G, DOU Y P, XIE Zh, et al. Research on characteristics of extreme ultraviolet emission from laser produce plasma on structured Sn target[J]. Chinese Journal of Lasers, 2021, 48(16): 1601005(in Chinese). DOI: 10.3788/CJL202148.1601005
    [31]
    SHIMADA Y, NISHIMURA H, NAKAI M, et al. Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams[J]. Applied Physics Le-tters, 2005, 86(5): 051501. DOI: 10.1063/1.1856697
    [32]
    WU L Zh, SHEN R Q, XU J, et al. Ultraviolet spectroscopic study of laser-induced Cu plasmas[J]. Journal of Atomic and Molecular Physics, 2010, 27(1): 117-122(in Chinese).
    [33]
    ZHENG P Ch, LIU H D, WANG J M, et al. Study on time evolution process of laser-induced aluminum alloy plasma[J]. Chinese Journal of Lasers, 2014, 41(10): 1015001(in Chinese). DOI: 10.3788/CJL201441.1015001
    [34]
    WU L, SU M G, MIN Q, et al. Analysis of extreme ultraviolet spectral profiles of laser-produced Cr plasmas[J]. Chinese Physics, 2019, B28(7): 075201.
    [35]
    BAKHIET M, SU M G, CAO Sh Q, et al. Analysis of ion radiation characteristics in the middle and late stages of laser-produced Cd plasma evolution in vacuum[J]. Journal of Quantitative Spectroscopy & Radiative, 2021, 263: 107535.
    [36]
    BALKI O, RAHMAN M M, ELSAYED-ALI H E. Optical emission spectroscopy of carbon laser plasma ion source[J]. Optics Communications, 2018, 412: 134-140. DOI: 10.1016/j.optcom.2017.11.087
    [37]
    BUTORIN P S, ZADIRANOV Y M, ZUEV S Y, et al. Absolutely calibrated spectrally resolved measurements of Xe laser plasma radiation intensity in the EUV range[J]. Technical Physics, 2018, 63(10): 1507-1510. DOI: 10.1134/S1063784218100080
    [38]
    VINOGRADOV A V, SHLYAPTSEV V N. Amplification of ultraviolet radiation in a laser plasma[J]. American Institute of Physics, 1983, 13(11): 1511-1514.
    [39]
    RADZIEMSKI L, CREMERS D A, BENELLI K, et al. Use of the vacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-based Martian geology and exploration[J]. Spectrochimica Acta, 2005, B60(2): 237-248.
    [40]
    LI X Y, LIN Zh X, LIU Y Y, et al. Spectroscopic study on the behaviors of the laser-induced air plasma[J]. Acta Optica Sinica, 2004, 24(8): 1051-1057(in Chinese).
    [41]
    LIN Zh X, WU J Q, GONG Sh Sh. Spectroscopic study on the time-evolution behaviors of the laser-induced N2 plasma[J]. Optics & Optoelectronic Technology, 2005, 3(1): 22-26(in Chinese).
    [42]
    LIU X L, SUN Sh H, CAO Y, et al. Experimental study on the behaviors of femtosecond-laser-induced low-pressure N2 plasma[J]. Acta Physica Sinica, 2013, 62(4): 045201(in Chinese). DOI: 10.7498/aps.62.045201
    [43]
    ZHANG L W, LIN Ch, XIN L, et al. New remote sensing system: White-light LiDAR[J]. High Power Laser and Particle Beams, 2008, 20(10): 1603-1608(in Chinese).
    [44]
    HAFEZ M A, KHEDR M A, ELAKSHER F F, et al. Characteristics of Cu plasma produced by a laser interaction with a solid target[J]. Plasma Sources Science and Technology, 2003, 12(3): 185-198.
    [45]
    WANG L, ZHOU Y, GONG H, et al. Effect of sample temperature on radiation characteristics of laser-induced Cu plasma[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(2): 110-116(in Chinese).
    [46]
    FILHO C I S, OLIVEIRA A L, PEREIRA S C F, et al. Bright thermal (blackbody) emission of visible light from LnO2 (Ln=Pr, Tb), photoinduced by a NIR 980nm laser[J]. Dalton Transactions, 2019, 48(8): 2574-2581. DOI: 10.1039/C8DT04649B
    [47]
    ABBAS Q A. Effect of target properties on the plasma characteristics that produced by laser at atmospheric pressure[J]. Iraqi Journal of Science, 2019, 60(6): 1251-1258.
    [48]
    TRAUTNER S, JASIK J, PARIGGER C G, et al. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands[J]. Spectrochimica Acta, 2017, A 174: 331-338.
    [49]
    HARILAL S S, SKRODZKI P J, MILOSHEVSKY A, et al. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas[J]. Physics of Plasma, 2017, 24(6): 063304. DOI: 10.1063/1.4985678
    [50]
    KAUTZ E J, YEAK J, BERNACKI B E, et al. The role of ambient gas confinement, plasma chemistry, and focusing conditions on emission features of femtosecond laser-produced plasmas[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(8): 1574-1586. DOI: 10.1039/D0JA00111B
    [51]
    RADZIEMSKI L J, CREMERS D A, BOSTIAN M, et al. Laser-induced breakdown spectra in the infrared region from 750 to 2000nm using a cooled InGaAs diode array detector[J]. Applied Spectroscopy, 2007, 61(11): 1141-1146. DOI: 10.1366/000370207782597166
    [52]
    JELINKOVA H, DOROSHENKO M E, OSIKO V V, et al. Dysprosium thiogallate laser: Source of mid-infrared radiation at 2.4, 4.3, and 5.4μm[J]. Applied Physics, 2016, A122(8): 1-8.
    [53]
    WANG X Sh, SONG X W, GAO X, et al. The effect of air pressure on the IR spectral emission from laser induced air plasma[J]. Optics Communications. 2020, 456: 124603. DOI: 10.1016/j.optcom.2019.124603
    [54]
    WANG X Sh, MA Y M, GAO X, et al. Near infrared characteristics of air plasma induced by nanosecond laser[J]. Acta Physica Sinica, 2020, 69(2): 029502(in Chinese). DOI: 10.7498/aps.69.20190753
    [55]
    WANG X Sh, YUAN L X, LI X, et al. The IR radiation characte-ristics of nanosecond pulsed laser induced air plasma[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2698-2701(in Chinese).
    [56]
    CIVIS S, FERUS M, KUBELIK P, et al. Potassium spectra in the 700-7000cm-1 domain: Transitions involving f-, g-, and h-states[J]. Astronomy & Astrophysics, 2012, 541(A125): 1-10.
    [57]
    THOMSON M D, KRE M, LOFFLER T, et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications[J]. Laser & Photon, 2007, 1(4): 349-368.
    [58]
    LIAO G Q, LI Y T. Review of intense terahertz radiation from relativistic laser-produced plasmas[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 1-7. DOI: 10.1109/TPS.2019.2917356
    [59]
    LI X H, ZHOU H B, ZOU D B. Study of ultra-intense laser driven solid line emitting terahertz wave[J]. Acta Optica Sinica, 2015, 35(3): 0314003(in Chinese). DOI: 10.3788/AOS201535.0314003
    [60]
    PETROV G M, DAVIDSON A, ROCK B, et al. Broadband terahertz radiation from metal targets irradiated by a short pulse laser[J]. Physics Plasmas, 2020, 27(1): 013109. DOI: 10.1063/1.5128345
    [61]
    WANG T Z, LEI H Y, SUN F Zh, et al. Experimental study of tera-hertz radiation driven by femtosecond ultraintense laser[J]. Acta Physica Sinica, 2021, 70(8): 085205(in Chinese). DOI: 10.7498/aps.70.20210518
    [62]
    HERZER S, WOLDEGEORGIS A, POLZ J, et al. An investigation on THz yield at relativistic laser intensities from laser-produced solid density plasmas[J]. New Journal of Physics, 2018, 20: 063019. DOI: 10.1088/1367-2630/aaada0
    [63]
    DAI J M, LIU J G, ZHANG X C. Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183-190. DOI: 10.1109/JSTQE.2010.2047007
    [64]
    SHKURINOV A L P, SINKO A S, SOLYANKIN P M, et al. Impact of the dipole contribution on the terahertz emission of air-based plasma induced by tightly focused femtosecond laser pulses[J]. Physical Review, 2017, E95(4): 043209.
    [65]
    WANG T J, MARCEAU C, YUAN S, et al. External focusing effect on terahertz emission from a two-color femtosecond laser-induced filament in air[J]. Laser Physical Letters, 2011, 8(1): 57-61. DOI: 10.1002/lapl.201010088
    [66]
    LI N, BAI Y, LIU P. Frequency control of the broadband ultrashort terahertz source generated from the laser induced plasma by two-color pluses[J]. Acta Physica Sinica, 2016, 65(11): 110701(in Chinese). DOI: 10.7498/aps.65.110701
    [67]
    ANDREEVA V A, KOSAREVA O G, PANOV N A, et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma[J]. Physical Review Letters, 2016, 116(6): 063902. DOI: 10.1103/PhysRevLett.116.063902
    [68]
    THIELE I, MARTINEZ P G D A, NUTER R, et al. Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas[J]. Physical Review, 2017, A96(5): 053814.
    [69]
    YOU Y S, OH T I, KIM K Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments[J]. Physical Review Letters, 2012, 109(18): 183902. DOI: 10.1103/PhysRevLett.109.183902
    [70]
    LUBENKO D M, PROKOPEV V E, ALEKSEEV S V, et al. Control of THz radiation divergence in laser filaments[J]. Atmospheric and Oceanic Optics, 2019, 32(4): 430-433. DOI: 10.1134/S1024856019040079
    [71]
    USHAKOV A, CHIZHOV P, BUKIN V, et al. Multiple filamentation effects on THz radiation pattern from laser plasma in air[J]. Photonics, 2021, 8(4): 1-8.
    [72]
    BAKHTIARI F, GOLMOHAMMADY S, YOUSEFI M, et al. Terahertz radiation generation and shape control by interaction of array Gaussian laser beams with plasma[J]. Physics of Plasmas, 2016, 23(12): 123105. DOI: 10.1063/1.4968836
    [73]
    VAICAITIS V, BALACHNINAITE O, MORGNER U, et al. Terahertz radiation generation by three-color laser pulses in air filament[J]. Journal Applied Physics, 2019, 125(17): 173103. DOI: 10.1063/1.5078683
    [74]
    DORRANIAN D, GHORANNEVISS M, STARODUBTSEV M, et al. Microwave emission from TW-100 fs laser irradiation of gas jet[J]. Laser and Particle Beams, 2005, 23(4): 583-596. DOI: 10.1017/S0263034605060052
    [75]
    NAKAJIMA H, SHIMADA Y, SOMEKAWA T, et al. Nondestructive sensor using microwaves from laser plasma by subnanosecond laser pulses[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 718-722. DOI: 10.1109/LGRS.2009.2024176
    [76]
    MIRAGLIOTTA J A, BRAWLEY B, SAILOR C, et al. Detection of microwave emission from solid targets ablated with an ultrashort pulsed laser[J]. Proceedings of the SPIE, 2011, 8037: 1-8.
    [77]
    ZVORYKIN V D, LONIN A A, LEVCHENKO A O, et al. Directed transfer of microwave radiation in slidingmode plasma waveguides produced by ultraviolet laser in atmospheric air[J]. Applied Optics, 2014, 53(31): 131-140.
    [78]
    STEPHAN K D, GARZA A E D L, HUA Y. Dispersion and attenuation characteristics of steady-state microwave plasma waveguide[J]. AIP Advances, 2020, 10(4): 045036. DOI: 10.1063/1.5124737
    [79]
    CHEN Z Y, LI J F, LI J, et al. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited[J]. Physica Scripta, 2011, 83(5): 055503. DOI: 10.1088/0031-8949/83/05/055503
    [80]
    JIANG W M, LI Y T, ZHANG Zh, et al. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions[J]. Acta Physica Sinica, 2019, 68(12): 125201(in Chinese). DOI: 10.7498/aps.68.20190501
    [81]
    KULYGIN M, DENISOV G. Nanosecond laser-driven semiconductor switch for 70GHz microwave radiation[J]. Journal of Infrared Millimeter & Terahertz Waves, 2012, 33: 638-648.
  • Cited by

    Periodical cited type(3)

    1. 岳俊哲,王志斌,赵宇,董驰,李坤钰,李晋华. 基于FPGA与TDC-GPX2的数字延时发生器设计. 激光杂志. 2023(02): 46-50 .
    2. 岳俊哲,赵宇,李坤钰,王志斌,刘昊,易进,李晋华. 基于Zynq的数字脉冲延时系统设计. 激光杂志. 2023(08): 26-30 .
    3. 齐立涛,陈金鑫,田振. 不同环境中纳秒激光烧蚀单晶硅的物质抛出机理. 激光技术. 2023(06): 824-830 . 本站查看

    Other cited types(7)

Catalog

    Article views (7) PDF downloads (9) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return