Citation: | WANG Weijiang, JIA Kai, FANG Ruina, XING Hao, HUANG Yun, ZHANG Ying, MA Chaoqun, WANG You. Review on radiation features of laser-induced plasma[J]. LASER TECHNOLOGY, 2022, 46(4): 499-510. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.010 |
[1] |
BEILIS I I. Laser plasma generation and plasma interaction with ablative target[J]. Laser and Particle Beams, 2007, 25(1): 53-63. DOI: 10.1017/S0263034607070097
|
[2] |
GIACOMO A D, DELL'AGLIO M, GAUDIUSO R, et al. Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas[J]. Spectrochimica Acta, 2012, B78: 1-19.
|
[3] |
FREEMAN J R, HARILAL S S, DIWAKAR P K, et al. Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions[J]. Spectrochimica Acta, 2013, B87: 43-50.
|
[4] |
CHAUDHARY K, RIZVI S Z H, ALI J. Laser-induced plasma and its applications[C]//Plasma Science and Technology-Progress in Physical States and Chemical Reaction. Durham, USA: Instrument Society of America, 2016: 259-291.
|
[5] |
WANG X F, PACHTMAN A, XU Zh Zh, et al. Laser plasma X-ray emission from 5 to 200[J]. Acta Physica Sinica, 1990, 39(6): 922-926(in Chinese).
|
[6] |
GIULIETTI D, GIZZI L A. X-ray emission from laser-produced plasmas[J]. Rivista Del Nuovo Cimento, 1998, 21(10): 1-89. DOI: 10.1007/BF02874624
|
[7] |
CANNAVÒ A, TORRISI L, CECCIO G, et al. Characterization of X-ray emission from laser generated plasma[C]//Plasma Physics by Laser and Application. Paris, France: Edition Diffusion Press Science, 2018, 167: 03004.
|
[8] |
KOROLIOV A, REKLAITIS J, VARSOCKAJA K, et al. X-ray pulse emission of alkali metal halide salts irradiated by femtosecond laser pulses[J]. Applied Physics, 2020, B126(144): 1-7.
|
[9] |
LOKASANI R, ARAI G, KONDO Y, et al. Soft X-ray emission from molybdenum plasmas generated by dual laser pulses[J]. Applied Physics Letters, 2016, 109(19): 194103. DOI: 10.1063/1.4967310
|
[10] |
WEGRZYNSKI Ł, BARTNIK A, WACHULAK P, et al. Laser-produced plasma soft X-ray source based on an aerosol target[J]. Phy-sics of Plasmas, 2020, 27(7): 073102. DOI: 10.1063/5.0005933
|
[11] |
WU T, HIGASHIGUCHI T, LI B W, et al. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd ∶YAG laser pulses[J]. Journal of Physics, 2016, B49(3): 035001.
|
[12] |
LI B W, OTSUKA T, SOKELL E, et al. Characteristics of laser produced plasmas of hafnium and tantalum in the 1-7 nm region[J]. The European Physical Journal, 2017, D71: 278.
|
[13] |
YIN L, WANG H Ch, REAGAN B A, et al. 6.7-nm emission from Gd and Tb plasmas over a broad range of irradiation parameters using a single laser[J]. Physical Review Applied, 2016, 6(3): 034009. DOI: 10.1103/PhysRevApplied.6.034009
|
[14] |
HARA H, ARAI G, KONDO Y, et al. Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas[J]. Applied Physics Express, 2016, 9(6): 066201. DOI: 10.7567/APEX.9.066201
|
[15] |
HE J, WU T, YANG L. Study on ultraviolet radiation characteristics of pulse laser-induced hafnium plasma[J]. Laser & Optoelectronics Progress, 2020, 57(19): 191402(in Chinese).
|
[16] |
ZHONG F Ch, DENG J, ZHANG Zh Q, et al. Characteristic of plasma X-ray emission generated by femtosecond and nanosecond laser pulses[J]. Acta Optica Sinica, 1999, 19(3): 364-368(in Ch-inese).
|
[17] |
MURNANE M M, KAPTEYN H C, ROSEN M D, et al. Ultrafast X-ray pulses from laser-produced plasmas[J]. Science, 1991, 251(4993): 531-536. DOI: 10.1126/science.251.4993.531
|
[18] |
CHEN Sh Sh, LI Y L, XU Zh Zh, et al. Soft X-ray emission from 1.06μm laser plasmas and its atomic number dependence[J]. Acta Optica Sinica, 1992, 12(1): 27-32(in Chinese).
|
[19] |
RYAZANTSEV S N, SKOBELEV I Y, FILIPPOV E D, et al. Precise wavelength measurements of potassium He- and Li-like satellites emitted from the laser plasma of a mineral target[J]. Matter and Radiation at Extremes, 2021, 6(1): 014402. DOI: 10.1063/5.0019496
|
[20] |
GUO Y B, PAN Sh F. Study of soft X-ray pulses from a repetitively laser-produce plasma[J]. Chinese Journal of Light Scattering, 1997, 9(1): 17-23(in Chinese).
|
[21] |
PHUOC K T, ROUSSE A, PITTMAN M, et al. X-ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma[J]. Physical Review Le-tters, 2003, 91(19): 195001. DOI: 10.1103/PhysRevLett.91.195001
|
[22] |
ZHAO T Z, BATSON T, HOU B, et al. Characterization of hard X-ray sources produced via the interaction of relativistic femtosecond laser pulses with metallic targets[J]. Applied Physics, 2019, B125(8): 1-9.
|
[23] |
FILIPPOV E D, MAKAROV S S, BURDONOV K F, et al. Enhanced X-ray emission arising from laser-plasma confinement by a strong transverse magnetic field[J]. Scientific Reports, 2021, 11: 8180. DOI: 10.1038/s41598-021-87651-8
|
[24] |
KRYGIER A, KEMP G E, COPPARI F, et al. Optimized continuum X-ray emission from laser-generated plasma[J]. Applied Physics Letters, 2020, 117(25): 251106. DOI: 10.1063/5.0033629
|
[25] |
VERSOLATO O O. Physics of laser-driven tin plasma sources of EUV radiation for nanolithography[J]. Plasma Sources Science and Technology, 2019, 27(7): 102923.
|
[26] |
WU T, WANG X B, WANG Sh Y, et al. Characteristics of extreme ultraviolet emission from tin plasma using CO2 laser for lithography[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1729-1733(in Chinese).
|
[27] |
SU M G, MIN Q, CAO S Q, et al. Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model[J]. Scientific Reports, 2017, 7: 45212. DOI: 10.1038/srep45212
|
[28] |
WANG J W, WANG X B, ZUO D L. Investigation of plume of laser-induced discharge plasma[J]. Laser Technology, 2020, 44(2): 173-177(in Chinese).
|
[29] |
WANG J W, WANG X B, ZUO D L, et al. Characteristics of discharge and beyong extreme ultraviolet spectra of laser induced discharge gadolinium plasma[J]. Optics and Laser Technology, 2021, 138: 106940.
|
[30] |
LI Zh G, DOU Y P, XIE Zh, et al. Research on characteristics of extreme ultraviolet emission from laser produce plasma on structured Sn target[J]. Chinese Journal of Lasers, 2021, 48(16): 1601005(in Chinese). DOI: 10.3788/CJL202148.1601005
|
[31] |
SHIMADA Y, NISHIMURA H, NAKAI M, et al. Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams[J]. Applied Physics Le-tters, 2005, 86(5): 051501. DOI: 10.1063/1.1856697
|
[32] |
WU L Zh, SHEN R Q, XU J, et al. Ultraviolet spectroscopic study of laser-induced Cu plasmas[J]. Journal of Atomic and Molecular Physics, 2010, 27(1): 117-122(in Chinese).
|
[33] |
ZHENG P Ch, LIU H D, WANG J M, et al. Study on time evolution process of laser-induced aluminum alloy plasma[J]. Chinese Journal of Lasers, 2014, 41(10): 1015001(in Chinese). DOI: 10.3788/CJL201441.1015001
|
[34] |
WU L, SU M G, MIN Q, et al. Analysis of extreme ultraviolet spectral profiles of laser-produced Cr plasmas[J]. Chinese Physics, 2019, B28(7): 075201.
|
[35] |
BAKHIET M, SU M G, CAO Sh Q, et al. Analysis of ion radiation characteristics in the middle and late stages of laser-produced Cd plasma evolution in vacuum[J]. Journal of Quantitative Spectroscopy & Radiative, 2021, 263: 107535.
|
[36] |
BALKI O, RAHMAN M M, ELSAYED-ALI H E. Optical emission spectroscopy of carbon laser plasma ion source[J]. Optics Communications, 2018, 412: 134-140. DOI: 10.1016/j.optcom.2017.11.087
|
[37] |
BUTORIN P S, ZADIRANOV Y M, ZUEV S Y, et al. Absolutely calibrated spectrally resolved measurements of Xe laser plasma radiation intensity in the EUV range[J]. Technical Physics, 2018, 63(10): 1507-1510. DOI: 10.1134/S1063784218100080
|
[38] |
VINOGRADOV A V, SHLYAPTSEV V N. Amplification of ultraviolet radiation in a laser plasma[J]. American Institute of Physics, 1983, 13(11): 1511-1514.
|
[39] |
RADZIEMSKI L, CREMERS D A, BENELLI K, et al. Use of the vacuum ultraviolet spectral region for laser-induced breakdown spectroscopy-based Martian geology and exploration[J]. Spectrochimica Acta, 2005, B60(2): 237-248.
|
[40] |
LI X Y, LIN Zh X, LIU Y Y, et al. Spectroscopic study on the behaviors of the laser-induced air plasma[J]. Acta Optica Sinica, 2004, 24(8): 1051-1057(in Chinese).
|
[41] |
LIN Zh X, WU J Q, GONG Sh Sh. Spectroscopic study on the time-evolution behaviors of the laser-induced N2 plasma[J]. Optics & Optoelectronic Technology, 2005, 3(1): 22-26(in Chinese).
|
[42] |
LIU X L, SUN Sh H, CAO Y, et al. Experimental study on the behaviors of femtosecond-laser-induced low-pressure N2 plasma[J]. Acta Physica Sinica, 2013, 62(4): 045201(in Chinese). DOI: 10.7498/aps.62.045201
|
[43] |
ZHANG L W, LIN Ch, XIN L, et al. New remote sensing system: White-light LiDAR[J]. High Power Laser and Particle Beams, 2008, 20(10): 1603-1608(in Chinese).
|
[44] |
HAFEZ M A, KHEDR M A, ELAKSHER F F, et al. Characteristics of Cu plasma produced by a laser interaction with a solid target[J]. Plasma Sources Science and Technology, 2003, 12(3): 185-198.
|
[45] |
WANG L, ZHOU Y, GONG H, et al. Effect of sample temperature on radiation characteristics of laser-induced Cu plasma[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(2): 110-116(in Chinese).
|
[46] |
FILHO C I S, OLIVEIRA A L, PEREIRA S C F, et al. Bright thermal (blackbody) emission of visible light from LnO2 (Ln=Pr, Tb), photoinduced by a NIR 980nm laser[J]. Dalton Transactions, 2019, 48(8): 2574-2581. DOI: 10.1039/C8DT04649B
|
[47] |
ABBAS Q A. Effect of target properties on the plasma characteristics that produced by laser at atmospheric pressure[J]. Iraqi Journal of Science, 2019, 60(6): 1251-1258.
|
[48] |
TRAUTNER S, JASIK J, PARIGGER C G, et al. Laser-induced optical breakdown spectroscopy of polymer materials based on evaluation of molecular emission bands[J]. Spectrochimica Acta, 2017, A 174: 331-338.
|
[49] |
HARILAL S S, SKRODZKI P J, MILOSHEVSKY A, et al. On- and off-axis spectral emission features from laser-produced gas breakdown plasmas[J]. Physics of Plasma, 2017, 24(6): 063304. DOI: 10.1063/1.4985678
|
[50] |
KAUTZ E J, YEAK J, BERNACKI B E, et al. The role of ambient gas confinement, plasma chemistry, and focusing conditions on emission features of femtosecond laser-produced plasmas[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(8): 1574-1586. DOI: 10.1039/D0JA00111B
|
[51] |
RADZIEMSKI L J, CREMERS D A, BOSTIAN M, et al. Laser-induced breakdown spectra in the infrared region from 750 to 2000nm using a cooled InGaAs diode array detector[J]. Applied Spectroscopy, 2007, 61(11): 1141-1146. DOI: 10.1366/000370207782597166
|
[52] |
JELINKOVA H, DOROSHENKO M E, OSIKO V V, et al. Dysprosium thiogallate laser: Source of mid-infrared radiation at 2.4, 4.3, and 5.4μm[J]. Applied Physics, 2016, A122(8): 1-8.
|
[53] |
WANG X Sh, SONG X W, GAO X, et al. The effect of air pressure on the IR spectral emission from laser induced air plasma[J]. Optics Communications. 2020, 456: 124603. DOI: 10.1016/j.optcom.2019.124603
|
[54] |
WANG X Sh, MA Y M, GAO X, et al. Near infrared characteristics of air plasma induced by nanosecond laser[J]. Acta Physica Sinica, 2020, 69(2): 029502(in Chinese). DOI: 10.7498/aps.69.20190753
|
[55] |
WANG X Sh, YUAN L X, LI X, et al. The IR radiation characte-ristics of nanosecond pulsed laser induced air plasma[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2698-2701(in Chinese).
|
[56] |
CIVIS S, FERUS M, KUBELIK P, et al. Potassium spectra in the 700-7000cm-1 domain: Transitions involving f-, g-, and h-states[J]. Astronomy & Astrophysics, 2012, 541(A125): 1-10.
|
[57] |
THOMSON M D, KRE M, LOFFLER T, et al. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications[J]. Laser & Photon, 2007, 1(4): 349-368.
|
[58] |
LIAO G Q, LI Y T. Review of intense terahertz radiation from relativistic laser-produced plasmas[J]. IEEE Transactions on Plasma Science, 2019, 47(6): 1-7. DOI: 10.1109/TPS.2019.2917356
|
[59] |
LI X H, ZHOU H B, ZOU D B. Study of ultra-intense laser driven solid line emitting terahertz wave[J]. Acta Optica Sinica, 2015, 35(3): 0314003(in Chinese). DOI: 10.3788/AOS201535.0314003
|
[60] |
PETROV G M, DAVIDSON A, ROCK B, et al. Broadband terahertz radiation from metal targets irradiated by a short pulse laser[J]. Physics Plasmas, 2020, 27(1): 013109. DOI: 10.1063/1.5128345
|
[61] |
WANG T Z, LEI H Y, SUN F Zh, et al. Experimental study of tera-hertz radiation driven by femtosecond ultraintense laser[J]. Acta Physica Sinica, 2021, 70(8): 085205(in Chinese). DOI: 10.7498/aps.70.20210518
|
[62] |
HERZER S, WOLDEGEORGIS A, POLZ J, et al. An investigation on THz yield at relativistic laser intensities from laser-produced solid density plasmas[J]. New Journal of Physics, 2018, 20: 063019. DOI: 10.1088/1367-2630/aaada0
|
[63] |
DAI J M, LIU J G, ZHANG X C. Terahertz wave air photonics: Terahertz wave generation and detection with laser-induced gas plasma[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 183-190. DOI: 10.1109/JSTQE.2010.2047007
|
[64] |
SHKURINOV A L P, SINKO A S, SOLYANKIN P M, et al. Impact of the dipole contribution on the terahertz emission of air-based plasma induced by tightly focused femtosecond laser pulses[J]. Physical Review, 2017, E95(4): 043209.
|
[65] |
WANG T J, MARCEAU C, YUAN S, et al. External focusing effect on terahertz emission from a two-color femtosecond laser-induced filament in air[J]. Laser Physical Letters, 2011, 8(1): 57-61. DOI: 10.1002/lapl.201010088
|
[66] |
LI N, BAI Y, LIU P. Frequency control of the broadband ultrashort terahertz source generated from the laser induced plasma by two-color pluses[J]. Acta Physica Sinica, 2016, 65(11): 110701(in Chinese). DOI: 10.7498/aps.65.110701
|
[67] |
ANDREEVA V A, KOSAREVA O G, PANOV N A, et al. Ultrabroad terahertz spectrum generation from an air-based filament plasma[J]. Physical Review Letters, 2016, 116(6): 063902. DOI: 10.1103/PhysRevLett.116.063902
|
[68] |
THIELE I, MARTINEZ P G D A, NUTER R, et al. Broadband terahertz emission from two-color femtosecond-laser-induced microplasmas[J]. Physical Review, 2017, A96(5): 053814.
|
[69] |
YOU Y S, OH T I, KIM K Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments[J]. Physical Review Letters, 2012, 109(18): 183902. DOI: 10.1103/PhysRevLett.109.183902
|
[70] |
LUBENKO D M, PROKOPEV V E, ALEKSEEV S V, et al. Control of THz radiation divergence in laser filaments[J]. Atmospheric and Oceanic Optics, 2019, 32(4): 430-433. DOI: 10.1134/S1024856019040079
|
[71] |
USHAKOV A, CHIZHOV P, BUKIN V, et al. Multiple filamentation effects on THz radiation pattern from laser plasma in air[J]. Photonics, 2021, 8(4): 1-8.
|
[72] |
BAKHTIARI F, GOLMOHAMMADY S, YOUSEFI M, et al. Terahertz radiation generation and shape control by interaction of array Gaussian laser beams with plasma[J]. Physics of Plasmas, 2016, 23(12): 123105. DOI: 10.1063/1.4968836
|
[73] |
VAICAITIS V, BALACHNINAITE O, MORGNER U, et al. Terahertz radiation generation by three-color laser pulses in air filament[J]. Journal Applied Physics, 2019, 125(17): 173103. DOI: 10.1063/1.5078683
|
[74] |
DORRANIAN D, GHORANNEVISS M, STARODUBTSEV M, et al. Microwave emission from TW-100 fs laser irradiation of gas jet[J]. Laser and Particle Beams, 2005, 23(4): 583-596. DOI: 10.1017/S0263034605060052
|
[75] |
NAKAJIMA H, SHIMADA Y, SOMEKAWA T, et al. Nondestructive sensor using microwaves from laser plasma by subnanosecond laser pulses[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 718-722. DOI: 10.1109/LGRS.2009.2024176
|
[76] |
MIRAGLIOTTA J A, BRAWLEY B, SAILOR C, et al. Detection of microwave emission from solid targets ablated with an ultrashort pulsed laser[J]. Proceedings of the SPIE, 2011, 8037: 1-8.
|
[77] |
ZVORYKIN V D, LONIN A A, LEVCHENKO A O, et al. Directed transfer of microwave radiation in slidingmode plasma waveguides produced by ultraviolet laser in atmospheric air[J]. Applied Optics, 2014, 53(31): 131-140.
|
[78] |
STEPHAN K D, GARZA A E D L, HUA Y. Dispersion and attenuation characteristics of steady-state microwave plasma waveguide[J]. AIP Advances, 2020, 10(4): 045036. DOI: 10.1063/1.5124737
|
[79] |
CHEN Z Y, LI J F, LI J, et al. Microwave radiation mechanism in a pulse-laser-irradiated Cu foil target revisited[J]. Physica Scripta, 2011, 83(5): 055503. DOI: 10.1088/0031-8949/83/05/055503
|
[80] |
JIANG W M, LI Y T, ZHANG Zh, et al. Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions[J]. Acta Physica Sinica, 2019, 68(12): 125201(in Chinese). DOI: 10.7498/aps.68.20190501
|
[81] |
KULYGIN M, DENISOV G. Nanosecond laser-driven semiconductor switch for 70GHz microwave radiation[J]. Journal of Infrared Millimeter & Terahertz Waves, 2012, 33: 638-648.
|
1. |
岳俊哲,王志斌,赵宇,董驰,李坤钰,李晋华. 基于FPGA与TDC-GPX2的数字延时发生器设计. 激光杂志. 2023(02): 46-50 .
![]() | |
2. |
岳俊哲,赵宇,李坤钰,王志斌,刘昊,易进,李晋华. 基于Zynq的数字脉冲延时系统设计. 激光杂志. 2023(08): 26-30 .
![]() | |
3. |
齐立涛,陈金鑫,田振. 不同环境中纳秒激光烧蚀单晶硅的物质抛出机理. 激光技术. 2023(06): 824-830 .
![]() |