Advanced Search
SHU Jie, QU Jun. M2 factor of electromagnetic elliptic multi-Gaussian- Schell mode beam in anisotropic turbulence[J]. LASER TECHNOLOGY, 2019, 43(6): 834-840. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.019
Citation: SHU Jie, QU Jun. M2 factor of electromagnetic elliptic multi-Gaussian- Schell mode beam in anisotropic turbulence[J]. LASER TECHNOLOGY, 2019, 43(6): 834-840. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.019

M2 factor of electromagnetic elliptic multi-Gaussian- Schell mode beam in anisotropic turbulence

More Information
  • Received Date: November 18, 2018
  • Revised Date: December 05, 2018
  • Published Date: November 24, 2019
  • In order to investigate the propagation characteristics of electromagnetic elliptical multi-Gaussian-Schell mode (EEMGSM) beams, based on the generalized Huygens-Fresnel principle and the second moment theory of Wigner distribution function, the analytical expression of M2 factor of EEMGSM beams propagating in anisotropic turbulence was derived theoretically. Through numerical calculation and analysis, the variations of initial polarization, initial coherence, waist width, wavelength and turbulence structure constant with M2 factor were investigated. The results show that, M2 factor of EEMGSM beam decreases with the increase of order, wavelength and waist width. It decreases with the decrease of initial coherence and turbulence structure constant. Under the same conditions, the beam quality of EEMGSM beams with large initial polarization is less affected by anisotropy than that of EEMGSM beams with small initial polarization. Under the same conditions, the quality factor of EEMGSM beam is smaller than that of scalar elliptical Gaussian-Schell mode (EGSM) beam. EEMGSM beam has the advantage of alleviating the influence of anisotropic turbulence. The study has certain theoretical reference value for the research of free space optical communication.
  • [1]
    SHIRAI T, DOGARIU A, WOLF E. Directionality of Gaussian Schell-model beams propagating in atmospheric turbulence[J]. Optics Letters, 2003, 28(8): 610-612. DOI: 10.1364/OL.28.000610
    [2]
    WU G H, GUO H, YU S, et al. Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence[J]. Optics Letters, 2010, 35(5): 715-717. DOI: 10.1364/OL.35.000715
    [3]
    GORI F, RAMIREZSANCHEZ V, SANTARSIERO M, et al. On genuine cross-spectral density matrices[J]. Journal of Optics, 2009, A11(8): 85706-85707. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c209dd995e75a410b502d6fb2b800d83
    [4]
    KOROTKOVA O, SAHIN S, SHCHEPAKINA E. Multi-Gaussian Schell-model beams[J]. Journal of the Optical Society of America, 2012, A29(10): 2159-2164. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229254158/
    [5]
    ZHOU Y, YUAN Y Sh, QU J, et al. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov turbulence[J]. Optics Express, 2016, 24(10): 10682-10693. DOI: 10.1364/OE.24.010682
    [6]
    MEI Zh R, KOROTKOVA O. Random sources generating ring-shaped beams[J]. Optics Letters, 2013, 38(2): 91-93. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0228760598/
    [7]
    WANG F, LIANG Ch H, YUAN Y Sh, et al. Generalized multi-Gaussian correlated Schell-model beam: From theory to experiment[J]. Optics Express, 2014, 22(19): 23456. DOI: 10.1364/OE.22.023456
    [8]
    YUAN Y Sh, LIU X L, WANG F, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Communications, 2013, 305(3): 57-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=346076c0ee817f29a19fb8912a8213b7
    [9]
    KOROTKOVA O, SALEM M, WOLF E. The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence[J]. Optics Communications, 2004, 233(4): 225-230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f156962c0033c3268d90ed8d15b17c5
    [10]
    ROYCHOWDHURY H, PONOMARENKO S, WOLF E. Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere[J]. Journal of Modern Optics, 2005, 52(11): 1611-1618. DOI: 10.1080/09500340500064841
    [11]
    KOROTKOVA O. Scintillation index of a stochastic electromagnetic beam propagating in random media[J]. Optics Communications, 2008, 281(9): 2342-2348. DOI: 10.1016/j.optcom.2007.12.047
    [12]
    REYNOLDS O. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels[J]. Proceedings of the Royal Society of London, 1883, 35(224/226): 84-99. http://www.onacademic.com/detail/journal_1000035835818810_b280.html
    [13]
    KARMAN T V. On the statistical theory of turbulence[J].Proceedings of the National Academy of Sciences of the United States of America, 1937, 23(2): 98-105. DOI: 10.1073/pnas.23.2.98
    [14]
    TAYLOR G I. Flow in pipes and between parallel planes[J]. Proceedings of the Royal Society of London, 1937, 159(899): 496-506. DOI: 10.1098/rspa.1937.0085
    [15]
    KOLMOGOROV A N. Reviews of topical problems: Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers[J]. Proceedings Mathematical & Physical Sciences, 1991, 434(1890): 9-13. http://cn.bing.com/academic/profile?id=6afee2b6fa75c7e4e3646b5a1d8386c5&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    OBUKHOV A M. Some specific features of atmospheric turbulence[J]. Journal of Geophysical Research, 1962, 67(8): 3011-3014. DOI: 10.1029/JZ067i008p03011
    [17]
    WU G H, DAI W, TANG H, et al. Beam wander of random electromagnetic Gaussian-Shell model vortex beams propagating through a Kolmogorov turbulence[J]. Optics Communications, 2015, 336: 55-58. DOI: 10.1016/j.optcom.2014.08.052
    [18]
    WU Zh N, XIE J R, YANG Y N. Design and implementation of beam shaping for high power semiconductor lasers[J]. Laser Technology, 2017, 41(3): 416-420(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201703022
    [19]
    ZHANG D B, SONG Y H, WANG Q Sh, et al. Error analysis of laser divergence angle measurement[J]. Laser Technology, 2016, 40(6): 926-929(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201606031.htm
    [20]
    HAN L Q, WANG Zh B. Fiber coupling efficiency and Strehl ratio for space optical communication based on adaptive optics correction[J]. Infrared and Laser Engineering, 2013, 42(1): 125-129(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201301023
    [21]
    KANG X P, LU B D. Applicability of kurtosis parameter characterizing the degree of sharpness of beam intensity distribution[J]. Laser Technology, 2005, 29(4): 426-428(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200504021
    [22]
    ZHAO Q, HAO H Y, FAN H Y, et al. Focusing characteristics of partially coherent cosh-Gaussian beams propagation through turbulent atmosphere[J]. Laser Technology, 2016, 40(5): 750-755(in Chinese).
    [23]
    MEI Zh R, MAO Y H, WANG Y Y. Electromagnetic multi-Gaussian Schell-model vortex light sources and their radiation field properties[J]. Optics Express, 2018, 26(17): 21992-22000. DOI: 10.1364/OE.26.021992
    [24]
    ZHU Sh J, CAI Y J, KOROTKOVA O. Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam[J]. Optics Express, 2010, 18(12): 12587-12598. DOI: 10.1364/OE.18.012587
    [25]
    WANG F, KOROTKOVA O. Random optical beam propagation in anisotropic turbulence along horizontal links[J]. Optics Express, 2016, 24(21): 24422-24434. DOI: 10.1364/OE.24.024422
    [26]
    SHIRAI T, DOGARIU A, WOLF E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America, 2003, A20(6):1094-1102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41b4fda52b6f59c2855b4e364084a0bc
  • Related Articles

    [1]GAO Jinquan, ZHOU Zhenglan, XU Huafeng, WU Bin, QU Jun. Modal intensity of partially coherent Airy vortex beams in non-Kolmogorov turbulence[J]. LASER TECHNOLOGY, 2021, 45(4): 522-529. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.018
    [2]HUANG Yan. Study on propagation characteristics of Gaussian-Schell model pulses in single-mode optical fibers[J]. LASER TECHNOLOGY, 2019, 43(6): 841-845. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.020
    [3]BAO Xunwang, YUAN Yangsheng, CUI Zhifeng, QU Jun. M2 factor of disturbed Bessel-Gaussian beam propagating in turbulent atmosphere[J]. LASER TECHNOLOGY, 2018, 42(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.026
    [4]CHEN Kai, ZHU Dongxu, JIAO Hongwei. Polarization properties of Gaussian-Schell model beams passing through focal optical system[J]. LASER TECHNOLOGY, 2014, 38(2): 246-250. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.021
    [5]ZHENG Zhen, LIU Yong-xin, . Propagation properties of Hermite-Laguerre-Gaussian beams[J]. LASER TECHNOLOGY, 2005, 29(6): 641-644.
    [6]LIU Cai-xia, HU Ji-gang, DENG Xiao-jiu, YANG Yan-fan. Study on the beam quality factor of sinh-Gaussian(ShG) beams[J]. LASER TECHNOLOGY, 2005, 29(4): 443-445.
    [7]WEN Qiao, ZHANG Bin. M2-factor, mode decomposition and beam combining of partially coherent flat-topped beams[J]. LASER TECHNOLOGY, 2005, 29(1): 68-71.
    [8]PENG Yuan-jie, LÜ Bai-da. Second-order moments matrix and M2 factor of optical beams[J]. LASER TECHNOLOGY, 2004, 28(6): 648-651.
    [9]Niu Yanxiong, Wang Yuefeng, Liu Xin, Zhang Chu, Zhu Shoushen. Laser beam quality factor M2 and its measurement[J]. LASER TECHNOLOGY, 1999, 23(1): 38-41.
    [10]Chen Peifeng, Qiu Junlin. Light beam propagation features defined by propagation factor M2[J]. LASER TECHNOLOGY, 1996, 20(1): 46-49.
  • Cited by

    Periodical cited type(2)

    1. 万玮华,郝培育,滕云鹏,李金全,李毅,郝海洋. 端面抽运的正交直角棱镜腔激光器研究. 激光技术. 2023(05): 600-605 . 本站查看
    2. 张培培,谢国坤,王昭. 激光超声波定向传输信道特性测试系统. 激光杂志. 2020(11): 162-166 .

    Other cited types(1)

Catalog

    Article views (3) PDF downloads (6) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return