[1]
|
WEI X Ch, OU P, ZHANG Ch X, et al. Single frequency single polarization narrow linewidth fiber laser and its amplification [J]. Laser Technology, 2009, 34(1):5-7(in Chinese). |
[2]
|
YAO X Q, SUN W, WANG X B. Dual-wavelength single-frequency fiber laser based on ring filter [J]. Laser Technology, 2017, 41(1): 98-100(in Chinese). |
[3]
|
HU J, ZHANG L, LIU H, et al. High-power single-frequency 1014.8nm Yb-doped fiber amplifier working at room temperature[J].Applied Optics, 2014, 53(22):4972-4977. doi: 10.1364/AO.53.004972 |
[4]
|
LIU X J, WEI G X, ZHOU B J, et al. 1120nm narrow linewidth ytterbium-doped fiber laser[J]. Laser Technology, 2016, 40(3):349-352(in Chinese). |
[5]
|
CHEN M H. Research progress of high-power fiber lasers[J]. Laser and Infrared, 2007, 37(7):589-592(in Chinese). |
[6]
|
ZHANG W N, LI C, FENG Zh M, et al. Short cavity single frequency fiber laser at 1080nm based on highly Yb3+-doped phosphate fiber[J]. Laser & Optoelectronics Progress, 2012, 49(10): 100601(in Chinese). |
[7]
|
SHI W, FU Sh J, FANG Q, et al. Single-frequency fiber laser based on rare-earth-doped silica fiber[J]. Infrared and Laser Engineering, 2016, 45(10): 1003001(in Chinese). doi: 10.3788/IRLA201645.1003001 |
[8]
|
QIAN X D, LI Zh R, LIANG X. Synchronization control of MOPA excimer laser system [J].Laser Technology, 2015, 39(2): 233-236(in Chinese). |
[9]
|
FUJITA E, MASHIKO Y, ASAYA S, et al. High power narrow-linewidth linearly-polarized 1610nm Er:Yb all-fiber MOPA[J]. Optics Express, 2016, 24(23):26255. doi: 10.1364/OE.24.026255 |
[10]
|
VARONA O, STEINKE M, NEUMANN J, et al. All-fiber, single-frequency, and single-mode Er3+:Yb3+, fiber amplifier at 1556nm core-pumped at 1018nm[J]. Optics Letters, 2018, 43(11):2632-2635. doi: 10.1364/OL.43.002632 |
[11]
|
FUJITA E, MASHIKO Y, ASAYA S, et al. High power narrow-linewidth linearly-polarized 1610nm Er:Yb all-fiber MOPA[J]. Optics Express, 2016, 24(23):26255. doi: 10.1364/OE.24.026255 |
[12]
|
GE X, YU J, LIU W, et al. High-power all-fiber 1.0/1.5μm dual-band pulsed MOPA source[J]. Chinese Optics Letters, 2018, 16(2):020010. doi: 10.3788/COL201816.020010 |
[13]
|
XUE J W, FANG Y J, AN H B, et al. The design of F-P scanning interferometer based on the STC singlechip [J]. Optics & Optoelectronic Technology, 2014, 12(5):8-12(in Chinese). |
[14]
|
LI X, HANG Zh G, YING L, et al. Research on power alignment technology of large mode field double cladding fiber fusion[J]. Laser Technology, 2017, 41 (3): 337-341(in Chinese). |
[15]
|
YAMG L, ZHENG J J, HAO L Y, et al. Influence of signal spectral width characteristic on SBS threshold of single frequency fiber amplifier[J]. Chinese Journal of Lasers, 2017, 44(9): 901009(in Ch-inese). doi: 10.3788/CJL201744.0901009 |
[16]
|
DRAGIC P D. Narrow linewidth fiber laser systems via Brillouin-tailored optical fiber[J]. Proceedings of the SPIE, 2016, 7323:73230W. |
[17]
|
ZHOU Z Ch, WANG X L, SU R T, et al. Theoretical study on SBS effect suppression of gradient doping gain fibers[J]. Laser & Opto-electronics Progress, 2016, 53(7): 70604(in Chinese). |
[18]
|
SINCORE A, BODNAR N, BRADFORD J, et al. SBS threshold dependence on pulse duration in a 2053nm single-mode fiber amplifier[J]. Journal of Lightwave Technology, 2017, 35(18):4000-4003. doi: 10.1109/JLT.2017.2729508 |
[19]
|
WANG X, YANG Y, LIU M, et al. Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers[J]. Applied Optics, 2016, 55(23):6475-6479. doi: 10.1364/AO.55.006475 |
[20]
|
XUE J W, LI K, FANG Y J, et al. High efficiency single frequency ring laser based on magnetic optical rotation glass[J]. Optoelectro-nic Technology, 2016, 36(2):122-125(in Chinese). |