Advanced Search
ZHU Zhijian, XUE Junwen, WANG Yuke, SUN Lu, SU Binghua. 1064nm single-frequency fiber lasers based on MOPA structure[J]. LASER TECHNOLOGY, 2019, 43(6): 800-803. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.013
Citation: ZHU Zhijian, XUE Junwen, WANG Yuke, SUN Lu, SU Binghua. 1064nm single-frequency fiber lasers based on MOPA structure[J]. LASER TECHNOLOGY, 2019, 43(6): 800-803. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.013

1064nm single-frequency fiber lasers based on MOPA structure

More Information
  • Received Date: December 29, 2018
  • Revised Date: January 07, 2019
  • Published Date: November 24, 2019
  • In order to suppress the stimulated Brillouin scattering effect and increase the amplification power of single frequency narrow linewidth seed source, master oscillator power amplifier (MOPA) structure was adopted. Fiber length, core diameter and pumping parameters were optimized. Optical output of 42W signal at 1064nm was realized. In the experiment, the first stage amplification used 914nm semiconductor laser as pumping source with gain fiber core diameter of 10μm and length of 8m. The second stage amplifier used 976nm semiconductor laser as the pumping source with gain fiber core diameter of 20μm and length of 2.4m. When seed power is 40mW, pump power of the first stage amplification is 6.8W and pump power of the second stage amplification is 85W, optical output 42W of the signal at 1064nm was obtained. The results show that light-to-light conversion efficiency is about 49.4%, polarization extinction ratio is 27.5dB; central wavelength of output signal light is 1064.5nm, and linewidth is about 70MHz. Single-frequency characteristics of seed light are maintained. Stimulated Brillouin scattering is not observed at 42W continuous output. Continuous increase of pump power is expected to achieve higher power amplification.
  • [1]
    WEI X Ch, OU P, ZHANG Ch X, et al. Single frequency single polarization narrow linewidth fiber laser and its amplification [J]. Laser Technology, 2009, 34(1):5-7(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201001013
    [2]
    YAO X Q, SUN W, WANG X B. Dual-wavelength single-frequency fiber laser based on ring filter [J]. Laser Technology, 2017, 41(1): 98-100(in Chinese). http://cn.bing.com/academic/profile?id=b9dedf1b1208168e33a812103ec4ee56&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    HU J, ZHANG L, LIU H, et al. High-power single-frequency 1014.8nm Yb-doped fiber amplifier working at room temperature[J].Applied Optics, 2014, 53(22):4972-4977. DOI: 10.1364/AO.53.004972
    [4]
    LIU X J, WEI G X, ZHOU B J, et al. 1120nm narrow linewidth ytterbium-doped fiber laser[J]. Laser Technology, 2016, 40(3):349-352(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201603010
    [5]
    CHEN M H. Research progress of high-power fiber lasers[J]. Laser and Infrared, 2007, 37(7):589-592(in Chinese).
    [6]
    ZHANG W N, LI C, FENG Zh M, et al. Short cavity single frequency fiber laser at 1080nm based on highly Yb3+-doped phosphate fiber[J]. Laser & Optoelectronics Progress, 2012, 49(10): 100601(in Chinese).
    [7]
    SHI W, FU Sh J, FANG Q, et al. Single-frequency fiber laser based on rare-earth-doped silica fiber[J]. Infrared and Laser Engineering, 2016, 45(10): 1003001(in Chinese). DOI: 10.3788/IRLA201645.1003001
    [8]
    QIAN X D, LI Zh R, LIANG X. Synchronization control of MOPA excimer laser system [J].Laser Technology, 2015, 39(2): 233-236(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=US20040847071
    [9]
    FUJITA E, MASHIKO Y, ASAYA S, et al. High power narrow-linewidth linearly-polarized 1610nm Er:Yb all-fiber MOPA[J]. Optics Express, 2016, 24(23):26255. DOI: 10.1364/OE.24.026255
    [10]
    VARONA O, STEINKE M, NEUMANN J, et al. All-fiber, single-frequency, and single-mode Er3+:Yb3+, fiber amplifier at 1556nm core-pumped at 1018nm[J]. Optics Letters, 2018, 43(11):2632-2635. DOI: 10.1364/OL.43.002632
    [11]
    FUJITA E, MASHIKO Y, ASAYA S, et al. High power narrow-linewidth linearly-polarized 1610nm Er:Yb all-fiber MOPA[J]. Optics Express, 2016, 24(23):26255. DOI: 10.1364/OE.24.026255
    [12]
    GE X, YU J, LIU W, et al. High-power all-fiber 1.0/1.5μm dual-band pulsed MOPA source[J]. Chinese Optics Letters, 2018, 16(2):020010. DOI: 10.3788/COL201816.020010
    [13]
    XUE J W, FANG Y J, AN H B, et al. The design of F-P scanning interferometer based on the STC singlechip [J]. Optics & Optoelectronic Technology, 2014, 12(5):8-12(in Chinese).
    [14]
    LI X, HANG Zh G, YING L, et al. Research on power alignment technology of large mode field double cladding fiber fusion[J]. Laser Technology, 2017, 41 (3): 337-341(in Chinese).
    [15]
    YAMG L, ZHENG J J, HAO L Y, et al. Influence of signal spectral width characteristic on SBS threshold of single frequency fiber amplifier[J]. Chinese Journal of Lasers, 2017, 44(9): 901009(in Ch-inese). DOI: 10.3788/CJL201744.0901009
    [16]
    DRAGIC P D. Narrow linewidth fiber laser systems via Brillouin-tailored optical fiber[J]. Proceedings of the SPIE, 2016, 7323:73230W. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC029504747
    [17]
    ZHOU Z Ch, WANG X L, SU R T, et al. Theoretical study on SBS effect suppression of gradient doping gain fibers[J]. Laser & Opto-electronics Progress, 2016, 53(7): 70604(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201607016
    [18]
    SINCORE A, BODNAR N, BRADFORD J, et al. SBS threshold dependence on pulse duration in a 2053nm single-mode fiber amplifier[J]. Journal of Lightwave Technology, 2017, 35(18):4000-4003. DOI: 10.1109/JLT.2017.2729508
    [19]
    WANG X, YANG Y, LIU M, et al. Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers[J]. Applied Optics, 2016, 55(23):6475-6479. DOI: 10.1364/AO.55.006475
    [20]
    XUE J W, LI K, FANG Y J, et al. High efficiency single frequency ring laser based on magnetic optical rotation glass[J]. Optoelectro-nic Technology, 2016, 36(2):122-125(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjs201602011
  • Related Articles

    [1]ZHANG Xuelian, YANG Peng, LIU Yongjian, NING Ding. Principle of preparation and parameters test of polarization-maintaining fiber[J]. LASER TECHNOLOGY, 2024, 48(1): 34-39. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.006
    [2]ZHANG Jia-lei, TAN Fu-li, WANG Wei-ping. Influence of beam intensity distribution on the thermal and mechanical behavior of cylindrical shells under laser irradiation[J]. LASER TECHNOLOGY, 2010, 34(5): 697-700. DOI: 10.3969/j.issn.1001-3806.2010.O5.033
    [3]QU Jun, YUAN Yang-sheng, MENG Kai, SHI Jian-ping, CUI Zhi-feng. Axial intensity distribution of limited Laguerre-Gaussian beams in turbulent atmosphere[J]. LASER TECHNOLOGY, 2010, 34(1): 141-144. DOI: 10.3969/j.issn.1001-3806.2010.01.040
    [4]WANG Tao, MA Li-li, WU Fu-quan, SONG Lian-ke, HAO Dian-zhong. Effects of Wollaston prism to the distribution of light intensity of single-mode Gaussian beam[J]. LASER TECHNOLOGY, 2010, 34(1): 109-111,119. DOI: 10.3969/j.issn.1001-3806.2010.01.031
    [5]OU Pan, XU Hong-jie, YANG De-wei, ZHANG Chun-xi. Measurement of high-birefringent polarization-maintaining fiber and its analysis with Mueller matrix[J]. LASER TECHNOLOGY, 2009, 33(1): 15-17,56.
    [6]WANG Tao, WU Fu-quan, MA Li-li, HAO Dian-zhong, SONG Lian-ke. Effect of Semarmont prism on distribution of light intensity of single-mode Gaussian beam[J]. LASER TECHNOLOGY, 2008, 32(3): 268-271.
    [7]YU Ye, NIU Yan-xiong, WANG Xiu-sheng, LIU Jie, JIANG Nan. Numerical simulation of steady-state thermal blooming about high power laser[J]. LASER TECHNOLOGY, 2007, 31(2): 182-184.
    [8]WU Ping, HU Xiang-feng, CHEN Tian-lu. Intensity distributions of Bessel-Gaussian beam in a fractional Fourier plane[J]. LASER TECHNOLOGY, 2005, 29(4): 437-439.
    [9]LIU Bo, LÜ Bai-da. Intensity distribution of converging spherical waves passing through an annular aperture[J]. LASER TECHNOLOGY, 2005, 29(1): 77-79,93.
    [10]Luo Shirong, Huang Lu, . The far-field intensity distribution and beam quality of unstable resonators[J]. LASER TECHNOLOGY, 1999, 23(5): 281-284.

Catalog

    Article views (3) PDF downloads (7) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return