Advanced Search
QIN Ling, ZHANG Yuque, LI Baoshan, DU Yongxing. LED visible light communication systems based on MIMO technology[J]. LASER TECHNOLOGY, 2019, 43(4): 539-545. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.018
Citation: QIN Ling, ZHANG Yuque, LI Baoshan, DU Yongxing. LED visible light communication systems based on MIMO technology[J]. LASER TECHNOLOGY, 2019, 43(4): 539-545. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.018

LED visible light communication systems based on MIMO technology

More Information
  • Received Date: August 26, 2018
  • Revised Date: October 29, 2018
  • Published Date: July 24, 2019
  • In order to improve the performance of an outdoor light emitting diode(LED) visible light communication system and solve the interference problems caused by turbulence, such as phase change, beam drift and beam spread, etc., a LED visible light communication system based on multiple-input multiple-output(MIMO) technology was proposed. Firstly, the atmospheric turbulence channel model was constructed. Secondly, the model of LED visible light communication system was built based on MIMO technology. Finally, the original signal was recovered by maximum ratio merging method and bit error rate was calculated. The results show that, at the same turbulence intensity, the greater the diversity of the system, the lower the bit error rate. In the strong turbulent channel environment, the M=3, N=4 communication system achieves a bit error rate of 10-7. Compared with the M=1, N=1 communication system, the bit error rate is reduced by five orders of magnitude. This study verifies the feasibility and effectiveness of MIMO technology in suppressing turbulence effect.
  • [1]
    QIN L, ZHANG Y Q, SONG K N, et al. Visible light communication system based on spread spectrum technology for intelligent transportation[J]. Optical & Quantum Electronics, 2017, 49(7):252-257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=02c41de19e9a24d9705b37a08d8d5e6f
    [2]
    CERRUELA G G, LUQUE R I, GOMEZNIETO M Á. State of the art, trends and future of bluetooth low energy, near field communication and visible light communication in the development of smart cities[J]. Sensors, 2016, 16(11):1968-1970. DOI: 10.3390/s16111968
    [3]
    NIU H H, HAN Y P. Performance analysis of Bessel-Gaussian vortex beam's propagation in atmospheric turbulence[J]. Laser Technology, 2017, 41(3):451-455(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201703029
    [4]
    TRANG N, ARIF H M, MIN J Y. Design and implementation of a novel compatible encoding scheme in the time domain for image sensor communication[J]. Sensors, 2016, 16(5):736-740. DOI: 10.3390/s16050736
    [5]
    LEE I E, GHASSEMLOOY Z, NG W P, et al. Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors[J]. App-lied Optics, 2016, 55(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5920f718fe8b9a404d20fad1089adc5
    [6]
    WANG X D, CUI Y, WU N, et al. Performance analysis of optical carrierless amplitude and phase modulation for indoor visible light communication system [J]. Acta Photonica Sinica, 2017, 46(5):506001(in Chinese). DOI: 10.3788/gzxb
    [7]
    LIU Y, ZHANG G A. Study on modulation scheme of visible light communications and its performance [J]. Laser & Optoelectronics Progress, 2014, 51(9):090601(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201409007
    [8]
    AHMED M M, AHMMED K T, HOSSAN A, et al. Performance of free space optical communication systems over exponentiated Weibull atmospheric turbulence channel for PPM and its derivatives[J]. Optik—International Journal for Light and Electron Optics, 2016, 127(20):9647-9657. DOI: 10.1016/j.ijleo.2016.07.036
    [9]
    LI R L, SHANG H L, LEI Y, et al. Research of key enabling technologies for high-speed visible-light communication [J]. Laser & Optoelectronics Progress, 2013, 50(5):050003(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGDJ201305005.htm
    [10]
    TRUNG H D, TUAN D T, PHAM A T. Pointing error effects on performance of free-space optical communication systems using SC-QAM signals over atmospheric turbulence channels[J]. AEUE-International Journal of Electronics and Communications, 2014, 68(9):869-876. DOI: 10.1016/j.aeue.2014.04.008
    [11]
    COJOCARIU L N, POPA V. Design of a multi-input-multiple-output visible light communication system for transport infrastructure to vehicle communication[C]// International Conference on Development and Application Systems.New York, USA: IEEE, 2014: 93-96.
    [12]
    ZHAO J Q, XU Y F, LI J H, et al. Turbulence channel modeling of visible light communication under strong background noise and diversity receiving technologies [J]. Acta Optica Sinica, 2016, 36(3):0301001(in Chinese). DOI: 10.3788/AOS
    [13]
    ZHUANG B, LI C, XU Z. Enhanced performance of spatial modulation with angular diversity receiver for indoor visible light communication[C]// IEEE International Conference on Communications in China.New York, USA: IEEE, 2016: 1-6. https://www.researchgate.net/publication/309437883_Enhanced_performance_of_spatial_modulation_with_angular_diversity_receiver_for_indoor_visible_light_communication
    [14]
    CHEN J, KE X Zh, ZHANG N, et al. Adaptive multi-layer space-time coding in FSO-MIMO[J]. Laser Technology, 2013, 37(2):158-164(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201302006
    [15]
    ZHU Y J, SUN Z G, ZHANG J K, et al. A fast blind detection algorithm for outdoor visible light communications[J]. IEEE Photonics Journal, 2015, 7(6):1-8. http://cn.bing.com/academic/profile?id=68d7d8e368acfe1b5cebf582f16b445b&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    CAI D M, WANG K, JIA P, et al. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen [J]. Acta Physica Sinica, 2014, 63(10):104217(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201410031
    [17]
    NIU H H, HAN Y P. Analysis of Bessel-Gaussian vortex beam pro-pagation in atmospheric turbulence[J]. Laser Technology, 2017, 41(3):451-455(in Chinese).
    [18]
    QIN L, HAO Y N, DU Y X, et al. Channel modeling and analysis for optical communication system of LED traffic lights[J]. Journal of Atmospheric & Environmental Optics, 2017, 12(3):221-229(in Chinese). http://cn.bing.com/academic/profile?id=58c31ff877654243f2d2e9e66f51743e&encoded=0&v=paper_preview&mkt=zh-cn
    [19]
    CHO Y S, KIM J W, YANG W Y, et al. MIMO-OFDM wireless communications with MATLAB[M]. Beijing: Electronic Industry Press Press, 2013:1-378(in Chinese).
    [20]
    LIU Y, ZHANG G A. Weak turbulence channel wireless optical communication diversity reception combining technology[J].Laser Technology, 2014, 38(5):698-702(in Chinese). http://cn.bing.com/academic/profile?id=3e6866d3354f05261629e220ca249c68&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

    [1]WANG Fang, YAN Fengping, QIN Qi, CHANG Huan, REN Wenhua. Research on equalization performance of blind equalization algorithms in mode-division multiplexing system[J]. LASER TECHNOLOGY, 2024, 48(1): 48-53. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.008
    [2]HE Fengtao, WANG Qingjie, ZHANG Jianlei, YANG Yi, WANG Ni, LI Bili. Bit error rate analysis of anisotropic ocean turbulence UWOC system with aperture reception[J]. LASER TECHNOLOGY, 2021, 45(6): 762-767. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.015
    [3]ZHU Yongqin, TIAN Erlin. Study on polarization mode dispersion suppression in optical transmission network based on optical circulators[J]. LASER TECHNOLOGY, 2018, 42(5): 699-703. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.021
    [4]ZHAO Taifei, WANG Xiufeng, LIU Yuan. Modulation research of helicopter landing using ultraviolet guiding technology in atmospheric turbulence[J]. LASER TECHNOLOGY, 2017, 41(3): 411-415. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.021
    [5]CHEN Dan, KE Xi-zheng. Analysis on error rate of wireless optical communication using subcarrier modulation on LDPC code[J]. LASER TECHNOLOGY, 2011, 35(3): 388-390,402. DOI: 10.3969/j.issn.1001-3806.2011.03.026
    [6]DENG Rang, RAO Jiong-hui, ZHANG Xiao-hui, GAO Wei, WEI Wei. Convolutional code design avoiding malignant codes in underwater optical communication systems[J]. LASER TECHNOLOGY, 2011, 35(2): 222-225. DOI: 10.3969/j.issn.1001-3806.2011.02.022
    [7]ZHANG Tie-ying, WANG Hong-xing, HE Wu-fu, MA Jie. Error coded modulation based on digital pulse modulation in optical wireless communication[J]. LASER TECHNOLOGY, 2010, 34(6): 843-846. DOI: 10.3969/j.issn.1001-3806.2010.06.033
    [8]KE Xi-zheng, CEHN Dan, QU Fei. Simulation of 4FSK and performance analysis of bit error rate in the RoFSO system[J]. LASER TECHNOLOGY, 2010, 34(4): 466-469. DOI: 10.3969/j.issn.1001-3806.2010.04.010
    [9]ZHAO Ying-jun, WANG Jiang-an, REN Xi-chuang, WANG Le-dong. Effect of the atmospheric turbulence on the bit error rate of laser communication among the ships[J]. LASER TECHNOLOGY, 2010, 34(2): 261-264. DOI: 10.3969/j.issn.1001-3806.2010.02.032
    [10]YI Miao, CHEN Ming-song, LI Tian-song, SUN Li-hua. Effect of imperfect slot synchronization on bit errors of MPPM in underwater laser communication[J]. LASER TECHNOLOGY, 2009, 33(6): 597-599,603. DOI: 10.3969/j.issn.1001-3806.2009.06.011
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (3) PDF downloads (5) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return