Citation: | QIN Ling, ZHANG Yuque, LI Baoshan, DU Yongxing. LED visible light communication systems based on MIMO technology[J]. LASER TECHNOLOGY, 2019, 43(4): 539-545. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.018 |
[1] |
QIN L, ZHANG Y Q, SONG K N, et al. Visible light communication system based on spread spectrum technology for intelligent transportation[J]. Optical & Quantum Electronics, 2017, 49(7):252-257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=02c41de19e9a24d9705b37a08d8d5e6f
|
[2] |
CERRUELA G G, LUQUE R I, GOMEZNIETO M Á. State of the art, trends and future of bluetooth low energy, near field communication and visible light communication in the development of smart cities[J]. Sensors, 2016, 16(11):1968-1970. DOI: 10.3390/s16111968
|
[3] |
NIU H H, HAN Y P. Performance analysis of Bessel-Gaussian vortex beam's propagation in atmospheric turbulence[J]. Laser Technology, 2017, 41(3):451-455(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201703029
|
[4] |
TRANG N, ARIF H M, MIN J Y. Design and implementation of a novel compatible encoding scheme in the time domain for image sensor communication[J]. Sensors, 2016, 16(5):736-740. DOI: 10.3390/s16050736
|
[5] |
LEE I E, GHASSEMLOOY Z, NG W P, et al. Effects of aperture averaging and beam width on a partially coherent Gaussian beam over free-space optical links with turbulence and pointing errors[J]. App-lied Optics, 2016, 55(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5920f718fe8b9a404d20fad1089adc5
|
[6] |
WANG X D, CUI Y, WU N, et al. Performance analysis of optical carrierless amplitude and phase modulation for indoor visible light communication system [J]. Acta Photonica Sinica, 2017, 46(5):506001(in Chinese). DOI: 10.3788/gzxb
|
[7] |
LIU Y, ZHANG G A. Study on modulation scheme of visible light communications and its performance [J]. Laser & Optoelectronics Progress, 2014, 51(9):090601(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201409007
|
[8] |
AHMED M M, AHMMED K T, HOSSAN A, et al. Performance of free space optical communication systems over exponentiated Weibull atmospheric turbulence channel for PPM and its derivatives[J]. Optik—International Journal for Light and Electron Optics, 2016, 127(20):9647-9657. DOI: 10.1016/j.ijleo.2016.07.036
|
[9] |
LI R L, SHANG H L, LEI Y, et al. Research of key enabling technologies for high-speed visible-light communication [J]. Laser & Optoelectronics Progress, 2013, 50(5):050003(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGDJ201305005.htm
|
[10] |
TRUNG H D, TUAN D T, PHAM A T. Pointing error effects on performance of free-space optical communication systems using SC-QAM signals over atmospheric turbulence channels[J]. AEUE-International Journal of Electronics and Communications, 2014, 68(9):869-876. DOI: 10.1016/j.aeue.2014.04.008
|
[11] |
COJOCARIU L N, POPA V. Design of a multi-input-multiple-output visible light communication system for transport infrastructure to vehicle communication[C]// International Conference on Development and Application Systems.New York, USA: IEEE, 2014: 93-96.
|
[12] |
ZHAO J Q, XU Y F, LI J H, et al. Turbulence channel modeling of visible light communication under strong background noise and diversity receiving technologies [J]. Acta Optica Sinica, 2016, 36(3):0301001(in Chinese). DOI: 10.3788/AOS
|
[13] |
ZHUANG B, LI C, XU Z. Enhanced performance of spatial modulation with angular diversity receiver for indoor visible light communication[C]// IEEE International Conference on Communications in China.New York, USA: IEEE, 2016: 1-6. https://www.researchgate.net/publication/309437883_Enhanced_performance_of_spatial_modulation_with_angular_diversity_receiver_for_indoor_visible_light_communication
|
[14] |
CHEN J, KE X Zh, ZHANG N, et al. Adaptive multi-layer space-time coding in FSO-MIMO[J]. Laser Technology, 2013, 37(2):158-164(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201302006
|
[15] |
ZHU Y J, SUN Z G, ZHANG J K, et al. A fast blind detection algorithm for outdoor visible light communications[J]. IEEE Photonics Journal, 2015, 7(6):1-8. http://cn.bing.com/academic/profile?id=68d7d8e368acfe1b5cebf582f16b445b&encoded=0&v=paper_preview&mkt=zh-cn
|
[16] |
CAI D M, WANG K, JIA P, et al. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen [J]. Acta Physica Sinica, 2014, 63(10):104217(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201410031
|
[17] |
NIU H H, HAN Y P. Analysis of Bessel-Gaussian vortex beam pro-pagation in atmospheric turbulence[J]. Laser Technology, 2017, 41(3):451-455(in Chinese).
|
[18] |
QIN L, HAO Y N, DU Y X, et al. Channel modeling and analysis for optical communication system of LED traffic lights[J]. Journal of Atmospheric & Environmental Optics, 2017, 12(3):221-229(in Chinese). http://cn.bing.com/academic/profile?id=58c31ff877654243f2d2e9e66f51743e&encoded=0&v=paper_preview&mkt=zh-cn
|
[19] |
CHO Y S, KIM J W, YANG W Y, et al. MIMO-OFDM wireless communications with MATLAB[M]. Beijing: Electronic Industry Press Press, 2013:1-378(in Chinese).
|
[20] |
LIU Y, ZHANG G A. Weak turbulence channel wireless optical communication diversity reception combining technology[J].Laser Technology, 2014, 38(5):698-702(in Chinese). http://cn.bing.com/academic/profile?id=3e6866d3354f05261629e220ca249c68&encoded=0&v=paper_preview&mkt=zh-cn
|