Advanced Search
HE Fengtao, WANG Qingjie, ZHANG Jianlei, YANG Yi, WANG Ni, LI Bili. Bit error rate analysis of anisotropic ocean turbulence UWOC system with aperture reception[J]. LASER TECHNOLOGY, 2021, 45(6): 762-767. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.015
Citation: HE Fengtao, WANG Qingjie, ZHANG Jianlei, YANG Yi, WANG Ni, LI Bili. Bit error rate analysis of anisotropic ocean turbulence UWOC system with aperture reception[J]. LASER TECHNOLOGY, 2021, 45(6): 762-767. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.015

Bit error rate analysis of anisotropic ocean turbulence UWOC system with aperture reception

More Information
  • Received Date: December 17, 2020
  • Revised Date: February 01, 2021
  • Published Date: November 24, 2021
  • In order to study the effect of aperture reception on the bit error rate of underwater wireless optical communication (UWOC) system under the condition of anisotropic ocean turbulence, Gaussian beam transmission was adopted to pass through an anisotropic ocean turbulence channel under pulse position modulation.The signal was then received though the apertureby the acceptor, the effects of ocean turbulence parameters, transmission distance, average gain of avalanche photodiode (APD), and modulation order on the bit error rate of the system under different receiving aperture and anisotropy factor were numerically simulatedby introducing the anisotropic ocean turbulence structure constant and analyzing the formation principle of scintillation and scintillation index under the condition of anisotropic ocean turbulence. The results show that under the same anisotropy factor and ocean turbulence parameters, the bit error rate performance of the system can be effectively improved by large aperture receiver. The larger the anisotropy factor, the better the system communication performance for the same aperture diameter and ocean turbulence parameters. The bit error rate performance of the system becomes better when the ratios of mean square temperature dissipation rate, temperature, and salinity contribution to the variation of ocean power spectrum are smaller, while the turbulent kinetic energy dissipation rate and kinetic viscosity are larger and the transmission distance is shorter. The performance of system communication is optimal when the APD gain is 100 or 150. The optimal system communication performance is achieved when the modulation order M=8, and the degree of system bit error rate variation is almost saturated when M>64. This study provides a reference for UWOC system platform construction and performance estimation.
  • [1]
    GÖKÇE M C, BAYKAL Y, ATA Y. Effect of anisotropy on perfor-mance of M-ary phase shift keying subcarrier intensity-modulated optical wireless communication links operating in strong oceanic turbulence[J]. Laser Physics Letters, 2020, 17(5): 056002. DOI: 10.1088/1612-202X/ab8291
    [2]
    GÖKÇE M C, BAYKAL Y. Aperture averaging and BER for Gaussian beam in underwater oceanic turbulence[J]. Optics Communications, 2018, 410: 830-835. DOI: 10.1016/j.optcom.2017.11.049
    [3]
    QIN L, ZHANG Y Q, LI B Sh, et al. LED visible light communication systems based on MIMO technology[J]. Laser Technology, 2019, 43(4): 103-109(in Chinese).
    [4]
    FU Y Q, HUANG Ch T, DU Y Zh. Bit error rate analysis for underwater optical communication system through strong oceanic turbulence[J]. Journal of Signal Processing, 2019, 35(5): 897-903(in Chin-ese).
    [5]
    CHI N, CHEN H. Progress and prospect of high-speed visible light communication[J]. Opto-Electronic Engineering, 2020, 47(3): 6-17(in Chinese).
    [6]
    LIU W H, XU Zh Y, YANG L Q. SIMO detection schemes for underwateroptical wireless communication under turbulence[J]. Photonics Research, 2015, 3(3): 48-53. DOI: 10.1364/PRJ.3.000048
    [7]
    LU H H, LI Ch Y, LIN H H, et al. A 5m/25Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 2018, 10(3): 1-9. http://www.onacademic.com/detail/journal_1000039521476410_ad52.html
    [8]
    HUANG A P, TAO L W, WANG Ch, et al. Error performance of underwater wireless optical communications with spatial diversity under turbulence channels[J]. Applied Optics, 2018, 57(26): 7600-7608. DOI: 10.1364/AO.57.007600
    [9]
    JAMALI M V, SALEHI J A, AKHOUNDI F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme[J]. IEEE Transactions on Communication, 2017, 65(3): 1176-1192. DOI: 10.1109/TCOMM.2016.2642943
    [10]
    FU Y Q, DUAN Q, HUANG Ch T, et al. Average BER perfor-mance of rectangular QAM-UWOC over strong oceanic turbulence channels with pointing error[J]. Optics Communications, 2020, 476: 126362. DOI: 10.1016/j.optcom.2020.126362
    [11]
    HUANG A P, TAO L W, NIU Y L. Underwater wireless optical MIMO system with spatial modulation and adaptive power allocation[J]. Optics Communications, 2018, 412: 21-27. DOI: 10.1016/j.optcom.2017.12.006
    [12]
    ZEDINI E, KAMMOUN A, SOURY H, et al. Performance analysis of dual-hop underwater wireless optical communication systems over mixture exponential-generalized gamma turbulence channels[J]. IEEE Transactions on Communications, 2020, 68(9): 5718-5731. DOI: 10.1109/TCOMM.2020.3006146
    [13]
    YI X, LI Z, LIU Z J. Underwater optical communication perfor-mance for laser beam propagation through weak oceanic turbulence[J]. Applied Optics, 2015, 54(6): 1273-1278. DOI: 10.1364/AO.54.001273
    [14]
    GÖKÇE M C, BAYKAL Y. Aperture averaging in strong oceanic turbulence[J]. Optics Communications, 2018, 413: 196-199. DOI: 10.1016/j.optcom.2017.12.059
    [15]
    FU Y Q, HUANG Ch T. Effect of aperture averaging on bit error rate for DPSK modulated UWOC system over strong oceanic turbulence[J]. Journal of Signal Processing, 2019, 35(9): 1607-1612 (in Chinese). http://www.sciencedirect.com/science/article/pii/S0030401819305395
    [16]
    KAMACIOCˇLU C, BAYKAL Y. Generalized expression for optical source fields[J]. Optics & Laser Technology, 2012, 44(6): 1706-1712. http://fulltext.study/preview/pdf/733772.pdf
    [17]
    TANG Sh J, DONG Y H, ZHANG X D. Impulse response modeling for underwater wireless optical communication links[J]. IEEE Transactions on Communications, 2014, 62(1): 226-234. DOI: 10.1109/TCOMM.2013.120713.130199
    [18]
    KAUSHAL H, KADDOUM G. Underwater optical wireless communication[J]. IEEE Access, 2016, 4(1): 1518-1547. http://www.onacademic.com/detail/journal_1000038801299510_4464.html
    [19]
    ANDREWS L C, PHILLIPS R L, HOPEN C Y, et al. Theory of optical scintillation[J]. Journal of the Optical Society of America, 1999, A16(6): 1417-1429. http://www.opticsinfobase.org/josaa/abstract.cfm?id=1190
    [20]
    ANDREWS L C, PHILLIPS R L. Laser beam propagation through random media[M]. 2nd ed. Bellingham Washington, USA: SPIE Press, 2005: 450-454.
    [21]
    HE F T, DU Y, ZHANG J L, et al. Bit error rate of pulse position modulation wireless opticalcommunication in gamma-gamma oceanicanisotropic turbulence[J]. Acta Physica Sinica, 2019, 68(16): 236-244(in Chinese). http://wulixb.iphy.ac.cn/EN/abstract/abstract74561.shtml
    [22]
    WANG S J, BAYKAL Y, PLONUS M A. Receiver-aperture averaging effects for the intensity fluctuation of a beam wave in the turbulent atmosphere[J]. Journal of the Optical Society of America, 1983, 73(6): 831-837.
    [23]
    KIASALEH K. Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence[J]. IEEE Transactions on Communications, 2005, 53(9): 1455-1461. http://www.researchgate.net/profile/Mohamed_Abaza2/publication/220086887_Erratum_to_Performance_of_APD-Based_PPM_Free-Space_Optical_Communication_Systems_in_Atmospheric_Turbulence_Sep_05_1455-1461/links/02e7e529b4018e0724000000

Catalog

    Article views (6) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return