Advanced Search
LONG Jiangxiong, LI Gang, YANG Bin, YAO Hongquan, DING Jianyong, ZHOU Jun. Seed-injected all-solid-state single-frequency lasers with high peak power[J]. LASER TECHNOLOGY, 2019, 43(3): 291-294. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.001
Citation: LONG Jiangxiong, LI Gang, YANG Bin, YAO Hongquan, DING Jianyong, ZHOU Jun. Seed-injected all-solid-state single-frequency lasers with high peak power[J]. LASER TECHNOLOGY, 2019, 43(3): 291-294. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.001

Seed-injected all-solid-state single-frequency lasers with high peak power

More Information
  • Received Date: August 26, 2018
  • Revised Date: October 22, 2018
  • Published Date: May 24, 2019
  • In order to develop a single-frequency pumping source for an optical parametric oscillator, a seed-injected, single-end pumped, Q-switched, bonded Nd:YAG single-frequency laser with 500Hz pulse repetition rate was designed by using the ramp-fire resonance detection technique with bias feedback, and a single longitudinal mode oscillation was established. The technology was analyzed theoretically. The results show that, when pump energy is 36.8mJ, output single pulse energy is 8.4mJ and optical efficiency is 23%, pulse width is 6.8ns, beam quality factor M2 is about 1.3, and peak power is 1.2MW. The interference pattern of output laser is obtained by using a F-P etalon. After one hour observation, single longitudinal mode probability of laser output is 100%. The result is helpful for the pump design of optical parametric oscillators.
  • [1]
    ZHOU J, YU T, LIU J Q, et al. Development of single-frequency laser for direct-detection wind lidar[J]. Proceedings of the SPIE, 2007, 6681:66810R. DOI: 10.1117/12.737750
    [2]
    LEMMERZ C, LUX O, REITEBUCH O, et al. Frequency and timing stability of an airborne injection-seeded Nd:YAG laser system for direct-detection wind lidar[J]. Applied Optics, 2017, 56(32):9057-9068. DOI: 10.1364/AO.56.009057
    [3]
    FREDE M, WILHELM R, GAU R, et al. High-power single-frequency Nd:YAG laser for gravitational wave detection[J]. Classical and Quantum Gravity, 2004, 21(5):S895-S901. DOI: 10.1088/0264-9381/21/5/078
    [4]
    FREDE M, WILHELM R, KRACHT D, et al. Nd:YAG ring laser with 213W linearly polarized fundamental mode output power[J]. Optics Express, 2005, 13(19):7516-7519. DOI: 10.1364/OPEX.13.007516
    [5]
    FAN Zh W, QIU J S, TANG X X, et al. A 100Hz 3.31J all-solid-state high beam quality Nd:YAG laser for space debris detecting[J]. Acta Physica Sinica, 2017, 66(5):054205(in Chinese).
    [6]
    XIE X B, ZHU X L, LI Sh G, et al. Injection-seeded single frequency 2.05μm output by ring cavity optical parametric oscillator[J]. Chinese Optics Letters, 2017, 15(9):091902. http://www.opticsjournal.net/Mobile/M_Details?aid=OJ170623000054NkQnTp
    [7]
    LILJESTRAND C, ZUKAUSKAS A, PASISKEVICIUS V, et al. Highly efficient mirrorless optical parametric oscillator pumped by nanosecond pulses[J]. Optics Letters, 2017, 42(13):2435-2438. DOI: 10.1364/OL.42.002435
    [8]
    VEDENYAPIN V, BOYKO A, KOLKER D, et al. LiGaSe2 optical parametric oscillator pumped by a Q-switched Nd:YAG laser[J]. Laser Physics Letters, 2016, 13(11):115401. DOI: 10.1088/1612-2011/13/11/115401
    [9]
    CHENG X J, LI Ch, XU F, et al. Progress in Fe ZnS/ZnSe middle-infrared solid-state lasers[J]. Laser Technology, 2018, 42(2):151-155(in Chinese).
    [10]
    HENDERSON S W, YUEN E H, FRY E S. Fast resonance-detection technique for single-frequency operation of injection-seeded Nd:YAG lasers[J]. Optics Letters, 1986, 11(11):715-717. DOI: 10.1364/OL.11.000715
    [11]
    WANG J T, ZHU R, ZHOU J, et al. Conductively cooled 1kHz single-frequency Nd:YAG laser for remote sensing[J]. Chinese Optics Letters, 2011, 9(8):081405. http://www.cnki.com.cn/Article/CJFDTOTAL-GXKB201108018.htm
    [12]
    LU T T, WANG J T, ZHU X L, et al. Highly efficient single longitudinal mode-pulsed green laser[J]. Chinese Optics Letters, 2013, 11(5):051402. https://www.osapublishing.org/col/abstract.cfm?uri=col-11-5-051402
    [13]
    EVTUHOV V, SIEGMAN A E. A "Twisted-Mode" technique for obtaining axially uniform energy density in a laser cavity[J]. Applied Optics, 1965, 4(1):142-143. http://cn.bing.com/academic/profile?id=20b0ac0bf19fda61344af2dc06986497&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    LI H, WANG Zh M, ZHANG F F, et al. Single-frequency all-solid-state laser technology[J]. Laser Technology, 2016, 40(1):141-147(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201601032
  • Related Articles

    [1]YANG Xiaojing, JIAO Qingju, WANG Yiting. Evaluation of beam quality of semiconductor lasers by beam parameter product[J]. LASER TECHNOLOGY, 2018, 42(6): 859-861. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.025
    [2]ZHENG Hui, LIN Ji-peng, SHI Fei, DAI Shu-tao, JIANG Xiong, KANG Zhi-jun, WENG Wen, LIN Wen-xiong. Effect of frequency doubling on beam quality and space distribution[J]. LASER TECHNOLOGY, 2009, 33(1): 67-70.
    [3]SHENG Zhao-xia, WANG Zai-jun. Influence of thermal deformation of high-power laser output windows on beam quality[J]. LASER TECHNOLOGY, 2008, 32(3): 278-280.
    [4]ZHANG En-tao, JI Xiao-ling, LÜBai-da. Influence of atmospheric absorption in the inner optical system on the laser beam quality[J]. LASER TECHNOLOGY, 2006, 30(1): 96-98.
    [5]Zhao Changming. Investigation on the experimental measurement of laser beam quality[J]. LASER TECHNOLOGY, 2000, 24(6): 341-344.
    [6]Li Cheng-de, Cheng Tao, Wan Ying, Zuo Tie-chuan. The beam quality diagnosis of Lambda Physik LPX 305iF excimer laser[J]. LASER TECHNOLOGY, 2000, 24(3): 155-157.
    [7]Shao Huaizong, Feng Guoying, Luo Shirong, Cai Bangwei, . Study of phosphate Nd:glass slab multipass amplifier system with high beam quality[J]. LASER TECHNOLOGY, 1998, 22(5): 261-264.
    [8]Analyzing some problems of laser beam quality[J]. LASER TECHNOLOGY, 1998, 22(1): 14-17.
    [9]Chen Peifeng, Chen Tao, Qiu Junlin. Preliminary study about the beam quality in laser material processing[J]. LASER TECHNOLOGY, 1995, 19(5): 289-292.
    [10]Qiu Junlin. The beam quality of high power lasers and its infl uences on the laser processing[J]. LASER TECHNOLOGY, 1994, 18(2): 86-91.
  • Cited by

    Periodical cited type(5)

    1. 邢艳丽,江文奇,井文华. 表面激光熔覆对体育器材硬度的改善. 激光与红外. 2022(01): 29-34 .
    2. 于奇,马佳,龙伟民,钟素娟,于新泉,潘建军. 金刚石工具用适配型CuSnZnNi预合金粉末的研制. 金刚石与磨料磨具工程. 2021(02): 23-27 .
    3. 刘玉璠,焦俊科,徐子法,欧阳文泰,张咪娜,刘政,昝少平,张文武. 激光熔覆制备TiC增强Ni-30Fe-20Al复合材料的组织与性能研究. 航空制造技术. 2021(12): 53-60 .
    4. 徐子法,焦俊科,张正,杨亚鹏,张文武. 镍基高温合金激光修复工艺研究. 材料导报. 2019(19): 3196-3202 .
    5. 李凌宇,石岩,李镇. 激光沉积铁基涂层微观组织与耐磨性能研究. 长春理工大学学报(自然科学版). 2018(04): 25-30 .

    Other cited types(4)

Catalog

    Article views (9) PDF downloads (12) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return