Citation: | XING Junna, HE Hongxia, CHI Hao. Research progress of frequency measurement of microwave signal based on photonics[J]. LASER TECHNOLOGY, 2018, 42(3): 404-409. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.022 |
[1] |
ZHANG Y Sh. The principle of radar electronic warfare[M].Beijing:National Defense Industry Press, 2005:20-50(in Chinese).
|
[2] |
LI W L, HE Z A, ZHOU T. Superheterodyne receiver based on optical bandpass sampling[J]. Electronic Information Confrontation Techno-logy, 2013, 28(4):39-42(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDK201304011.htm
|
[3] |
ZOU X H, LU B, PAN W, et al. Photonics for microwave measurements[J]. Laser & Photonics Reviews, 2016, 10(5):711-734. http://cn.bing.com/academic/profile?id=e5820e34a5713802a97b4f351b8901cd&encoded=0&v=paper_preview&mkt=zh-cn
|
[4] |
NGUYEN L V T, HUNTER D B. A photonic technique for microwave frequency measurement[J]. IEEE Photonics Technology Letters, 2006, 18(10):1188-1190. DOI: 10.1109/LPT.2006.874742
|
[5] |
ZOU X H, PAN Sh L, YAO J P. Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation[J]. Journal of Lightwave Technology, 2009, 27(23):5314-5320. DOI: 10.1109/JLT.2009.2030695
|
[6] |
LI X Y, WEN A J, MA X M, et al. Photonic microwave frequency measurement with a tunable range based on a dual-polarization modulator[J]. Applied Optics, 2016, 55(31):8727-8731. DOI: 10.1364/AO.55.008727
|
[7] |
TU Zh Y, WEN A J, GAO Y Sh, et al. A photonic techn ique for instantaneous microwave frequency measurement utilizing a phase modulator[J]. IEEE Photonics Technology Letters, 2016, 28(24):2795-2798. DOI: 10.1109/LPT.2016.2623321
|
[8] |
CHI H, ZOU X H, YAO J P. An approach to the measur-ement of microwave frequency based on optical power monitoring[J]. IEEE Photonics Technology Letters, 2008, 20(14):1249-1251. DOI: 10.1109/LPT.2008.926025
|
[9] |
ZOU X H, CHI H, YAO J P. Microwave frequency meas- urement based on optical power monitoring using a complementary optical filter pair[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(2):505-511. DOI: 10.1109/TMTT.2008.2011237
|
[10] |
ZOU X H, PAN W, LUO B, et al. Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters[J]. IEEE Photonics Technology Letters, 2011, 23(1):39-41. DOI: 10.1109/LPT.2010.2090867
|
[11] |
SARKHOSH N, EMAMI H, BUI L, et al. Reduced cost photonic instantaneous frequency measurement system[J]. IEEE Photonics Technology Letters, 2008, 20(18):1521-1523. DOI: 10.1109/LPT.2008.927895
|
[12] |
BUI L A, MITCHELL A. Amplitude independent instan-taneous frequency measurement using all optical technique[J]. Optics Express, 2013, 21(24):29601-29611. DOI: 10.1364/OE.21.029601
|
[13] |
EMAMI H, ASHOURIAN M. Improved dynamic range microwave photonic instantaneous frequency measurement based on fourwave mixing[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(10):2462-2470. DOI: 10.1109/TMTT.2014.2341624
|
[14] |
WANG W Sh, DAVIS R L, JUNG T J, et al. Characterization of a coherent optical RF channelizer based on a diffraction grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(10):1996-2001. DOI: 10.1109/22.954820
|
[15] |
ZOU X H, PAN W, LUO B, et al. Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source[J]. Optics Letters, 2010, 35(3):438-440. DOI: 10.1364/OL.35.000438
|
[16] |
WIBERG A O J, ESMAN D J, LIU L, et al. Coherent filterless Wideband microwave/millimeter-wave channelizer based on broadband parametric mixers[J]. Journal of Lightwave Technology, 2014, 32(20):3609-3617. DOI: 10.1109/JLT.2014.2320445
|
[17] |
ZOU X H, LI W, PAN W, et al. Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(9):3470-3478. DOI: 10.1109/TMTT.2013.2273892
|
[18] |
XU W Y, ZHU D, PAN Sh L. Coherent photonic radio frequency channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering[J]. Optical Engineering, 2016, 55(4):046106. DOI: 10.1117/1.OE.55.4.046106
|
[19] |
NGUYEN T A, CHAN E H W, MINASIAN R A. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mappingtechnique[J]. Optics Letters, 2014, 39(8):2419-2422. DOI: 10.1364/OL.39.002419
|
[20] |
VIDAL B, MENGUAL T, MARTI J. Photonic technique for the measurement of frequency and power of multiple microwave signals[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11):3103-3108. DOI: 10.1109/TMTT.2010.2076710
|
[21] |
WANG Y, CHI H, ZHANG X M, et al. Photonic approach for microwave spectral analysis based on Fourier cosine transform[J]. Optics Letters, 2011, 36(19):3897-3899. DOI: 10.1364/OL.36.003897
|
[22] |
RUGELAND P, YU Z, STERNER C, et al. Photonic scanning receiver using an electrically tuned fiber Bragg grating[J]. Optics Letters, 2009, 34(24):3794-3796. DOI: 10.1364/OL.34.003794
|
[23] |
GUO H L, XIAO G Zh, MRAD N, et al. Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating[J]. IEEE Photonics Technology Letters, 2009, 21(1):45-47. DOI: 10.1109/LPT.2008.2008199
|
[24] |
JIANG H Y, MARPAUNG D, PAGANI M, et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica, 2016, 3(1):30-34. http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-3-1-30
|
[25] |
CHI H, YAO J P. Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator[J]. Electronics Letters, 2007, 43(7):415-417. DOI: 10.1049/el:20073808
|
[26] |
SAPERSTEIN R E, PANASENKO D, FAINMAN Y. Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber[J]. Optics Letters, 2004, 29(5):501-503. DOI: 10.1364/OL.29.000501
|
[27] |
DUAN Y H, CHEN L, ZHOU H D, et al. Ultrafast electrical spectrum analyzer based on all-optical Fourier transformand temporal magnification[J]. Optics Express, 2017, 25(7):7520-7529. DOI: 10.1364/OE.25.007520
|
[28] |
LU B, PAN W, ZOU X H, et al. Photonic microwave frequency measurement with high-coding-efficiency digital outputs and large measurement range[J]. IEEE Photonics Journal, 2013, 5(5):5501906. DOI: 10.1109/JPHOT.2013.2280517
|
[29] |
CHEN Y, YANG B, CHI H, et al. Photonic instantaneous frequency measurement with digital output based on dispersion induced power fading functions[J]. Optics Communications, 2013, 292(4):53-56. http://www.sciencedirect.com/science/article/pii/S0030401812013922
|
[30] |
MA Y X, LIANG D, PENG D, et al. Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters[J]. Optics Express, 2017, 25(3):2355-2368. DOI: 10.1364/OE.25.002355
|
[31] |
BHUSHAN A S, COPPINGER F, JALALI B.Time-stretched analogue-to-digital conversion[J]. Electronics Letters, 1998, 34(9):839-841. DOI: 10.1049/el:19980629
|
[32] |
TROPP J A, LASKA J N, DUARTE M F, et al. Beyond Nyquist: E-fficient sampling of sparse bandlimited signals[J]. IEEE Transactions on Information Theory, 2010, 56(1):520-544. DOI: 10.1109/TIT.2009.2034811
|
[33] |
NICHOLS J M, BUCHOLTZ F. Beating Nyquist with light:a compressively sampled photonic link[J]. Optics Express, 2011, 19(8):7339-7348. DOI: 10.1364/OE.19.007339
|
[34] |
CHI H, MEI Y, CHEN Y, et al. Microwave spectral analysis based on photonic compressive sampling with random demodulation[J]. Optics Letters, 2012, 37(22):4636-4638. DOI: 10.1364/OL.37.004636
|
[35] |
VALLEY G C, SEFLER G A, SHAW T J. Compressive sensing of sparse radio frequency signals using optical mixing[J]. Optics Lett-ers, 2012, 37(22):4675-4677. DOI: 10.1364/OL.37.004675
|
[36] |
GUO Q, LIANG Y H, CHEN M H, et al. Compressive spectrum sensing of radar pulses based on photonic techniques[J]. Optics Express, 2015, 23(4):4517-4522. DOI: 10.1364/OE.23.004517
|
[37] |
NAN H, GU Y T, ZHANG H M. Optical analog-to-digital conversion system based on compressive sampling[J]. IEEE Photonics Techno-logy Letters, 2011, 23(2):67-69. DOI: 10.1109/LPT.2010.2086442
|
[38] |
CHI H, CHEN Y, MEI Y, et al. Microwave spectrum sensing based on photonic time stretch and compressive sampling[J]. Optics Lett-ers, 2013, 38(2):136-138. DOI: 10.1364/OL.38.000136
|
[39] |
LIU X D. Integrated optics and its applications[J].Laser Technology, 1981, 5(2):1-7(in Chinese). http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212735670/
|
[40] |
MARPAUNG D. On-chip photonic-assisted instantaneous microwave frequency measurement system[J]. IEEE Photonics Technology Letters, 2013, 25(9):837-840. DOI: 10.1109/LPT.2013.2253602
|
[41] |
PAGANI M, MORRISON B, ZHANG Y, et al. Low-error and broadband microwave frequency measurement in a silicon chip[J]. Optica, 2015, 2(8):751-756. DOI: 10.1364/OPTICA.2.000751
|
[42] |
SONG M G, CAO L Q, LIU F M, et al.Optimized design of grating coupling packaging structure on siliconsubstrate[J]. Laser Techno-logy, 2017, 41(4):479-483(in Chinese). http://www.jgjs.net.cn/EN/abstract/abstract15611.shtml
|
[1] | LI Ming, SONG Guolong, BI Ye, LI Xinglin, ZHANG Xiuqi, WANG Yuning, ZHENG Quan. Miniaturization design and analysis of shell structure of all-fiber laser[J]. LASER TECHNOLOGY, 2024, 48(4): 584-589. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.018 |
[2] | WEI Jia-ju, LIANG Yi-ping, DAI Te-li. Numerical analysis of reflection spectrum of linearly chirped fiber Bragg gratings[J]. LASER TECHNOLOGY, 2012, 36(5): 607-611. DOI: 10.3969/j.issn.1001-3806.2012.05.008 |
[3] | CAO Yun-jiu, LIU Ye, CHEN Guang-long, XU Hong-xia. 圆柱体腔振动稳定性研究[J]. LASER TECHNOLOGY, 2012, 36(2): 262-264. DOI: 10.3969/j.issn.1001-3806.2012.02.031 |
[4] | CEN Jia-sheng, WANG Qing-mei, LUO Hui, WU Qiang. Theoretical derivation and numerical analysis for droplet's boundary diffraction[J]. LASER TECHNOLOGY, 2011, 35(6): 837-840,856. DOI: 10.3969/j.issn.1001-3806.2011.06.030 |
[5] | YIN Feng, TAO Xiang-yang. Acceleration of relativistic electrons in Gaussian laser electromagnetic field[J]. LASER TECHNOLOGY, 2011, 35(3): 384-387. DOI: 10.3969/j.issn.1001-3806.2011.03.025 |
[6] | YU Xiao-qiu, LI Ming-zhong, WANG Jian-jun, GENG Yuan-chao, XU Dang-peng, LIN Hong-huan, ZHANG Rui, HUANG Xiao-dong. Characteristic analysis of gain guided index antiguided large-mode-area fiber lasers[J]. LASER TECHNOLOGY, 2011, 35(1): 25-28,78. DOI: 10.3969/j.issn.1001-3806.2011.01.008 |
[7] | LIU Guo-hua, LIU De-ming. Numerical analysis of Raman effects in high power fiber lasers[J]. LASER TECHNOLOGY, 2007, 31(3): 298-300,321. |
[8] | WU Da-jian, HONG Yun, BU Min, WANG Ya-wei. A model for light scattering from red blood cells[J]. LASER TECHNOLOGY, 2007, 31(2): 156-159. |
[9] | OU Pan, ZHANG Chun-xi, YAN Ping, GONG Ma-li. Numerical analysis for multi-position-pumped double-clad fiber lasers[J]. LASER TECHNOLOGY, 2007, 31(2): 150-152,178. |
[10] | Li Anying, Yang Yapei. Review of the new development of beam propagation method for analysis of optical waveguide[J]. LASER TECHNOLOGY, 2000, 24(4): 236-240. |
1. |
闫星宇,傅海威,雍振,王晓玲,张泽,赵子良. 光声光谱气体检测系统中光声池的仿真优化设计. 光通信技术. 2023(03): 86-90 .
![]() | |
2. |
朱文江,余银辉,李辰溪,安冉,陈珂. 基于组合激光光源的双组分微量气体检测系统. 激光技术. 2022(05): 657-662 .
![]() | |
3. |
张刚,吴许强,汪辉,葛强,左铖,余国锋,唐春安,俞本立. 共光声池腔芯轴型空气衬底光纤麦克风. 光学学报. 2021(02): 34-42 .
![]() |