Advanced Search
XING Junna, HE Hongxia, CHI Hao. Research progress of frequency measurement of microwave signal based on photonics[J]. LASER TECHNOLOGY, 2018, 42(3): 404-409. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.022
Citation: XING Junna, HE Hongxia, CHI Hao. Research progress of frequency measurement of microwave signal based on photonics[J]. LASER TECHNOLOGY, 2018, 42(3): 404-409. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.022

Research progress of frequency measurement of microwave signal based on photonics

More Information
  • Received Date: June 14, 2017
  • Revised Date: July 24, 2017
  • Published Date: May 24, 2018
  • Microwave frequency measurement is an important part of electronic reconnaissance. With the development of radar electronic warfare, the operating frequency of microwave increases rapidly. Conventional electronic frequency measurement schemes cannot meet the development of electronic reconnaissance due to their limitation in measurement bandwidth. Approaches of microwave frequency measurement based on photonics have the characteristics of large instantaneous bandwidth, low loss and immunity to electro-magnetic interference. According to the current frequency measurement schemes of microwave signal based on photonics, five technical approaches are introduced and discussed, including instantaneous frequency measurement, photonic-assisted microwave channelization, multi-frequency measurement, microwave frequency measurement based on photonic analog-to-digital conversion, photonic compressive sensing. Moreover, the potential of integrated optics for photonics-based microwave frequency measurement is briefly discussed. In the development of microwave frequency measurement, the photonics-based method has a broad prospect of application.
  • [1]
    ZHANG Y Sh. The principle of radar electronic warfare[M].Beijing:National Defense Industry Press, 2005:20-50(in Chinese).
    [2]
    LI W L, HE Z A, ZHOU T. Superheterodyne receiver based on optical bandpass sampling[J]. Electronic Information Confrontation Techno-logy, 2013, 28(4):39-42(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDK201304011.htm
    [3]
    ZOU X H, LU B, PAN W, et al. Photonics for microwave measurements[J]. Laser & Photonics Reviews, 2016, 10(5):711-734. http://cn.bing.com/academic/profile?id=e5820e34a5713802a97b4f351b8901cd&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    NGUYEN L V T, HUNTER D B. A photonic technique for microwave frequency measurement[J]. IEEE Photonics Technology Letters, 2006, 18(10):1188-1190. DOI: 10.1109/LPT.2006.874742
    [5]
    ZOU X H, PAN Sh L, YAO J P. Instantaneous microwave frequency measurement with improved measurement range and resolution based on simultaneous phase modulation and intensity modulation[J]. Journal of Lightwave Technology, 2009, 27(23):5314-5320. DOI: 10.1109/JLT.2009.2030695
    [6]
    LI X Y, WEN A J, MA X M, et al. Photonic microwave frequency measurement with a tunable range based on a dual-polarization modulator[J]. Applied Optics, 2016, 55(31):8727-8731. DOI: 10.1364/AO.55.008727
    [7]
    TU Zh Y, WEN A J, GAO Y Sh, et al. A photonic techn ique for instantaneous microwave frequency measurement utilizing a phase modulator[J]. IEEE Photonics Technology Letters, 2016, 28(24):2795-2798. DOI: 10.1109/LPT.2016.2623321
    [8]
    CHI H, ZOU X H, YAO J P. An approach to the measur-ement of microwave frequency based on optical power monitoring[J]. IEEE Photonics Technology Letters, 2008, 20(14):1249-1251. DOI: 10.1109/LPT.2008.926025
    [9]
    ZOU X H, CHI H, YAO J P. Microwave frequency meas- urement based on optical power monitoring using a complementary optical filter pair[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(2):505-511. DOI: 10.1109/TMTT.2008.2011237
    [10]
    ZOU X H, PAN W, LUO B, et al. Photonic instantaneous frequency measurement using a single laser source and two quadrature optical filters[J]. IEEE Photonics Technology Letters, 2011, 23(1):39-41. DOI: 10.1109/LPT.2010.2090867
    [11]
    SARKHOSH N, EMAMI H, BUI L, et al. Reduced cost photonic instantaneous frequency measurement system[J]. IEEE Photonics Technology Letters, 2008, 20(18):1521-1523. DOI: 10.1109/LPT.2008.927895
    [12]
    BUI L A, MITCHELL A. Amplitude independent instan-taneous frequency measurement using all optical technique[J]. Optics Express, 2013, 21(24):29601-29611. DOI: 10.1364/OE.21.029601
    [13]
    EMAMI H, ASHOURIAN M. Improved dynamic range microwave photonic instantaneous frequency measurement based on fourwave mixing[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(10):2462-2470. DOI: 10.1109/TMTT.2014.2341624
    [14]
    WANG W Sh, DAVIS R L, JUNG T J, et al. Characterization of a coherent optical RF channelizer based on a diffraction grating[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(10):1996-2001. DOI: 10.1109/22.954820
    [15]
    ZOU X H, PAN W, LUO B, et al. Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source[J]. Optics Letters, 2010, 35(3):438-440. DOI: 10.1364/OL.35.000438
    [16]
    WIBERG A O J, ESMAN D J, LIU L, et al. Coherent filterless Wideband microwave/millimeter-wave channelizer based on broadband parametric mixers[J]. Journal of Lightwave Technology, 2014, 32(20):3609-3617. DOI: 10.1109/JLT.2014.2320445
    [17]
    ZOU X H, LI W, PAN W, et al. Photonic-assisted microwave channelizer with improved channel characteristics based on spectrum-controlled stimulated Brillouin scattering[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(9):3470-3478. DOI: 10.1109/TMTT.2013.2273892
    [18]
    XU W Y, ZHU D, PAN Sh L. Coherent photonic radio frequency channelization based on dual coherent optical frequency combs and stimulated Brillouin scattering[J]. Optical Engineering, 2016, 55(4):046106. DOI: 10.1117/1.OE.55.4.046106
    [19]
    NGUYEN T A, CHAN E H W, MINASIAN R A. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mappingtechnique[J]. Optics Letters, 2014, 39(8):2419-2422. DOI: 10.1364/OL.39.002419
    [20]
    VIDAL B, MENGUAL T, MARTI J. Photonic technique for the measurement of frequency and power of multiple microwave signals[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(11):3103-3108. DOI: 10.1109/TMTT.2010.2076710
    [21]
    WANG Y, CHI H, ZHANG X M, et al. Photonic approach for microwave spectral analysis based on Fourier cosine transform[J]. Optics Letters, 2011, 36(19):3897-3899. DOI: 10.1364/OL.36.003897
    [22]
    RUGELAND P, YU Z, STERNER C, et al. Photonic scanning receiver using an electrically tuned fiber Bragg grating[J]. Optics Letters, 2009, 34(24):3794-3796. DOI: 10.1364/OL.34.003794
    [23]
    GUO H L, XIAO G Zh, MRAD N, et al. Measurement of microwave frequency using a monolithically integrated scannable echelle diffractive grating[J]. IEEE Photonics Technology Letters, 2009, 21(1):45-47. DOI: 10.1109/LPT.2008.2008199
    [24]
    JIANG H Y, MARPAUNG D, PAGANI M, et al. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter[J]. Optica, 2016, 3(1):30-34. http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-3-1-30
    [25]
    CHI H, YAO J P. Symmetrical waveform generation based on temporal pulse shaping using amplitude-only modulator[J]. Electronics Letters, 2007, 43(7):415-417. DOI: 10.1049/el:20073808
    [26]
    SAPERSTEIN R E, PANASENKO D, FAINMAN Y. Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber[J]. Optics Letters, 2004, 29(5):501-503. DOI: 10.1364/OL.29.000501
    [27]
    DUAN Y H, CHEN L, ZHOU H D, et al. Ultrafast electrical spectrum analyzer based on all-optical Fourier transformand temporal magnification[J]. Optics Express, 2017, 25(7):7520-7529. DOI: 10.1364/OE.25.007520
    [28]
    LU B, PAN W, ZOU X H, et al. Photonic microwave frequency measurement with high-coding-efficiency digital outputs and large measurement range[J]. IEEE Photonics Journal, 2013, 5(5):5501906. DOI: 10.1109/JPHOT.2013.2280517
    [29]
    CHEN Y, YANG B, CHI H, et al. Photonic instantaneous frequency measurement with digital output based on dispersion induced power fading functions[J]. Optics Communications, 2013, 292(4):53-56. http://www.sciencedirect.com/science/article/pii/S0030401812013922
    [30]
    MA Y X, LIANG D, PENG D, et al. Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters[J]. Optics Express, 2017, 25(3):2355-2368. DOI: 10.1364/OE.25.002355
    [31]
    BHUSHAN A S, COPPINGER F, JALALI B.Time-stretched analogue-to-digital conversion[J]. Electronics Letters, 1998, 34(9):839-841. DOI: 10.1049/el:19980629
    [32]
    TROPP J A, LASKA J N, DUARTE M F, et al. Beyond Nyquist: E-fficient sampling of sparse bandlimited signals[J]. IEEE Transactions on Information Theory, 2010, 56(1):520-544. DOI: 10.1109/TIT.2009.2034811
    [33]
    NICHOLS J M, BUCHOLTZ F. Beating Nyquist with light:a compressively sampled photonic link[J]. Optics Express, 2011, 19(8):7339-7348. DOI: 10.1364/OE.19.007339
    [34]
    CHI H, MEI Y, CHEN Y, et al. Microwave spectral analysis based on photonic compressive sampling with random demodulation[J]. Optics Letters, 2012, 37(22):4636-4638. DOI: 10.1364/OL.37.004636
    [35]
    VALLEY G C, SEFLER G A, SHAW T J. Compressive sensing of sparse radio frequency signals using optical mixing[J]. Optics Lett-ers, 2012, 37(22):4675-4677. DOI: 10.1364/OL.37.004675
    [36]
    GUO Q, LIANG Y H, CHEN M H, et al. Compressive spectrum sensing of radar pulses based on photonic techniques[J]. Optics Express, 2015, 23(4):4517-4522. DOI: 10.1364/OE.23.004517
    [37]
    NAN H, GU Y T, ZHANG H M. Optical analog-to-digital conversion system based on compressive sampling[J]. IEEE Photonics Techno-logy Letters, 2011, 23(2):67-69. DOI: 10.1109/LPT.2010.2086442
    [38]
    CHI H, CHEN Y, MEI Y, et al. Microwave spectrum sensing based on photonic time stretch and compressive sampling[J]. Optics Lett-ers, 2013, 38(2):136-138. DOI: 10.1364/OL.38.000136
    [39]
    LIU X D. Integrated optics and its applications[J].Laser Technology, 1981, 5(2):1-7(in Chinese). http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0212735670/
    [40]
    MARPAUNG D. On-chip photonic-assisted instantaneous microwave frequency measurement system[J]. IEEE Photonics Technology Letters, 2013, 25(9):837-840. DOI: 10.1109/LPT.2013.2253602
    [41]
    PAGANI M, MORRISON B, ZHANG Y, et al. Low-error and broadband microwave frequency measurement in a silicon chip[J]. Optica, 2015, 2(8):751-756. DOI: 10.1364/OPTICA.2.000751
    [42]
    SONG M G, CAO L Q, LIU F M, et al.Optimized design of grating coupling packaging structure on siliconsubstrate[J]. Laser Techno-logy, 2017, 41(4):479-483(in Chinese). http://www.jgjs.net.cn/EN/abstract/abstract15611.shtml
  • Related Articles

    [1]LI Ming, SONG Guolong, BI Ye, LI Xinglin, ZHANG Xiuqi, WANG Yuning, ZHENG Quan. Miniaturization design and analysis of shell structure of all-fiber laser[J]. LASER TECHNOLOGY, 2024, 48(4): 584-589. DOI: 10.7510/jgjs.issn.1001-3806.2024.04.018
    [2]WEI Jia-ju, LIANG Yi-ping, DAI Te-li. Numerical analysis of reflection spectrum of linearly chirped fiber Bragg gratings[J]. LASER TECHNOLOGY, 2012, 36(5): 607-611. DOI: 10.3969/j.issn.1001-3806.2012.05.008
    [3]CAO Yun-jiu, LIU Ye, CHEN Guang-long, XU Hong-xia. 圆柱体腔振动稳定性研究[J]. LASER TECHNOLOGY, 2012, 36(2): 262-264. DOI: 10.3969/j.issn.1001-3806.2012.02.031
    [4]CEN Jia-sheng, WANG Qing-mei, LUO Hui, WU Qiang. Theoretical derivation and numerical analysis for droplet's boundary diffraction[J]. LASER TECHNOLOGY, 2011, 35(6): 837-840,856. DOI: 10.3969/j.issn.1001-3806.2011.06.030
    [5]YIN Feng, TAO Xiang-yang. Acceleration of relativistic electrons in Gaussian laser electromagnetic field[J]. LASER TECHNOLOGY, 2011, 35(3): 384-387. DOI: 10.3969/j.issn.1001-3806.2011.03.025
    [6]YU Xiao-qiu, LI Ming-zhong, WANG Jian-jun, GENG Yuan-chao, XU Dang-peng, LIN Hong-huan, ZHANG Rui, HUANG Xiao-dong. Characteristic analysis of gain guided index antiguided large-mode-area fiber lasers[J]. LASER TECHNOLOGY, 2011, 35(1): 25-28,78. DOI: 10.3969/j.issn.1001-3806.2011.01.008
    [7]LIU Guo-hua, LIU De-ming. Numerical analysis of Raman effects in high power fiber lasers[J]. LASER TECHNOLOGY, 2007, 31(3): 298-300,321.
    [8]WU Da-jian, HONG Yun, BU Min, WANG Ya-wei. A model for light scattering from red blood cells[J]. LASER TECHNOLOGY, 2007, 31(2): 156-159.
    [9]OU Pan, ZHANG Chun-xi, YAN Ping, GONG Ma-li. Numerical analysis for multi-position-pumped double-clad fiber lasers[J]. LASER TECHNOLOGY, 2007, 31(2): 150-152,178.
    [10]Li Anying, Yang Yapei. Review of the new development of beam propagation method for analysis of optical waveguide[J]. LASER TECHNOLOGY, 2000, 24(4): 236-240.
  • Cited by

    Periodical cited type(3)

    1. 闫星宇,傅海威,雍振,王晓玲,张泽,赵子良. 光声光谱气体检测系统中光声池的仿真优化设计. 光通信技术. 2023(03): 86-90 .
    2. 朱文江,余银辉,李辰溪,安冉,陈珂. 基于组合激光光源的双组分微量气体检测系统. 激光技术. 2022(05): 657-662 . 本站查看
    3. 张刚,吴许强,汪辉,葛强,左铖,余国锋,唐春安,俞本立. 共光声池腔芯轴型空气衬底光纤麦克风. 光学学报. 2021(02): 34-42 .

    Other cited types(2)

Catalog

    Article views (8) PDF downloads (9) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return