Citation: | QI Bin, LIU Yude, SHI Wentian, WANG Shuo, YANG Jin, ZHANG Feifei. Study on overlap ratio of pulse laser selective melting forming[J]. LASER TECHNOLOGY, 2018, 42(3): 311-317. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.005 |
[1] |
STOPYRA W, KYRZAC J, GRUBER K, et al.Influence of laser power on the penetration depth and geometry of scanning tracks in se-lective laser melting[J]. Proceedings of the SPIE, 2016, 10159:101590R. DOI: 10.1117/12.2262079
|
[2] |
ZHANG D Y, FENG Q H, LI Zh B, et al. Application of laser direct manufacturing of metallic part in aerospace industry[J].Aeronautical Manufacturing Technology, 2011(9):38-41(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkgyjs201109004
|
[3] |
DEMIR A G, COLOMBO P, PREVITALI B. From pulsed to continuous wave emission in SLM with contemporary fiber laser sources:effect of temporal and spatial pulse overlap in part quality[J].International Journal of Advanced Manufacturing Technology, 2017, 91(5/8):2701-2714. DOI: 10.1007/s00170-016-9948-7
|
[4] |
LIU R Ch, YANG Y Q, WANG D. Research of upper surface roughness of metal parts fabricatedby selective laser melting[J]. Laser Technology, 2013, 37(4):425-430(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201304004.htm
|
[5] |
CHERRY J A, DAVIES H M, MEHMOOD S, et al.Investigation into the effect of process parameterson microstructural and physical properties of 316L stainless steel parts by selective laser melting[J].International Journal of Advanced Manufacturing Technology, 2015, 76(5/8):869-879. DOI: 10.1007/s00170-014-6297-2
|
[6] |
WANG D, YANG Y Q, SU X B, et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM[J]. International Journal of Advanced Manufacturing Technology, 2012, 58(9/12):1189-1199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f60e398a280ded72d1a8ca6ec7cd5c5
|
[7] |
WANG D, WU Sh B, MAI Sh Zh, et al.Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties[J].Materials & Design, 2017, 117:121-130. http://www.sciencedirect.com/science/article/pii/S0264127516315866
|
[8] |
GU D D, SHEN Y F. Balling phenomena in direct laser sintering of stainless steel powder:Metallurgical mechanisms and control methods[J]. Materials & Design, 2009, 30(8):2903-2910. http://www.sciencedirect.com/science/article/pii/S0261306909000181
|
[9] |
ZHANG G, WANG J H, ZHANG H. Research progress of balling phenomena in selective laser melting[J].Foundry Technology, 2017, 38(2):262-265(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZZJS201702002.htm
|
[10] |
WANG J H, BAI P K.Study on process parameters on surface quality of Ti6Al4V by selective laser melting[J]. Hot Working Technology, 2013, 42(15):13-15(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy201315004
|
[11] |
ZHOU X, LIU W. Melting and solidifying behavior in single layer selective laser of pure tungsten powder[J]. Chinese Journal of Lasers, 2016, 43(5):0503006(in Chinese). DOI: 10.3788/CJL
|
[12] |
SUN Zh J, TAN X P, TOR Sh B, et al.Selective laser melting of stainless steel 316L with low porosity and high build rates[J].Materials & Design, 2016, 104:197-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81b7d4283d5c821d0fd8e2ebd817986b
|
[13] |
ZHANG Y Zh, LIU F R, CHEN J M, et al. Effects of surface quality on corrosion resistance of 316L stainless steel parts manufactured via SLM[J]. Journal of Laser Applications, 2017, 29(2):022306. DOI: 10.2351/1.4983263
|
[14] |
LI R D, LIU J H, SHI Y S, et al. 316L stainless steel with gradient porosity fabricated by selective laser melting[J]. Journal of Materials Engineering & Performance, 2010, 19(5):666-671. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f1034e80b854485e85ea71073d9316f7
|
[15] |
YASA E, KRUTH J P. Microstructural investigation of selective laser melting 316l stainless steel parts exposed to laser re-melting[J]. Procedia Engineering, 2011, 19(1):389-395. http://www.sciencedirect.com/science/article/pii/S1877705811029390
|
[16] |
BRANDL E, HECKENBERGER U, HOLZINGER V, et al.Additive manufactured AlSi10Mg samples using selective laser melting (SLM):Microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34:159-169. http://www.sciencedirect.com/science/article/pii/S0261306911005590
|
[17] |
SUN T T, YANG Y Q, SU X B, et al.Research on densification of 316L stainless steel powder in selective laser melting process[J]. Laser Technology, 2010, 34(4):443-446(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201004005.htm
|
[18] |
LU J B, YANG Y Q, WANG D, et al. Analysis of affecting factors of overhanging surface quality by selective laser melting[J]. Laser Technology, 2011, 35(2):148-151(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201102002
|
[19] |
WANG M Y, ZHU H H, QI T, et al. Selective laser melting Al-Si aluminum alloy and the crack formation mechanism[J]. Laser Technology, 2016, 40(2):219-222(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201602014
|
[20] |
ZHANG X Y, FANG G, ZHOU J. Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior:A review[J]. Materials, 2017, 10(1):50-54. DOI: 10.3390/ma10010050
|
[21] |
FRAZIER W E. Metal additive manufacturing:A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6):1917-1928. DOI: 10.1007/s11665-014-0958-z
|
[22] |
YAN C, HAO L, HUSSEIN A, et al.Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Materials & Design, 2014, 55:533-541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6527fa9912c263ad47db807d6cbf5d62
|
[23] |
MA M, WANG Z, ZENG X. A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition[J]. Materials Science and Engineering, 2017, A685:265-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0a29cee07e1dff944b329979daf2183d
|
[24] |
AHMADI A, MIRZAEIFAR R, MOGHADDAM N S, et al. Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting:A computational framework[J]. Materials & Design, 2016, 112:328-338. http://www.sciencedirect.com/science/article/pii/S0264127516312175
|
[25] |
LI P, WANG Z, PETRINIC N, et al.Deformation behaviour of stainless steel micro lattice structures by selective laser melting[J]. Materials Science and Engineering, 2014, A614(5):116-121. http://www.sciencedirect.com/science/article/pii/S0921509314008806
|
[26] |
GUNENTHIRAM V, PEYRE P, SCHNEIDER M, et al.Analysis of laser-melt pool-powder bed interaction during the selective laser melting of a stainless steel[J]. Journal of Laser Applications, 2017, 29(2):022303. DOI: 10.2351/1.4983259
|
[27] |
ZHANG B, DEMBINSKI L, CODDET C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316l powder[J]. Materials Science and Engineering, 2013, A584(6):21-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a27610fa12edaf6566a66e02191e47c9
|
[28] |
MIRZA F, CHEN D. A unified model for the prediction of yield strength in particulate-reinforced metal matrix nanocomposites[J]. Materials, 2015, 8(8):5138-5153. DOI: 10.3390/ma8085138
|
[29] |
WANG D, YANG Y, HUANG Y L, et al.Impact of inter-layer scan strategy on quality of direct fabrication metal parts in SLM process[J]. Laser Technology, 2010, 34(4):447-451(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201004015
|