Advanced Search
QIAO Yulin, ZHAO Jixin, XUE Yinchang, LIANG Xiubing. Ceramic coatings prepared by laser pyrolysis of polysiloxane modified by titanate[J]. LASER TECHNOLOGY, 2018, 42(2): 217-221. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.015
Citation: QIAO Yulin, ZHAO Jixin, XUE Yinchang, LIANG Xiubing. Ceramic coatings prepared by laser pyrolysis of polysiloxane modified by titanate[J]. LASER TECHNOLOGY, 2018, 42(2): 217-221. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.015

Ceramic coatings prepared by laser pyrolysis of polysiloxane modified by titanate

More Information
  • Received Date: May 15, 2017
  • Revised Date: June 12, 2017
  • Published Date: March 24, 2018
  • In order to solve the problem that metallic powder active fillers were easily dispersed nonuniformly while preparing ceramic coatings by polymer derived ceramics method, the ceramic coating was prepared by laser pyrolysis of polydimethylsiloxane modified by butyl titanate. The composition and structure of products were analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that, while the mass fraction of the addition of butyl titanate is 0.05, the relative content of Ti element in different areas of coatings is about 3% and Ti element disperses uniformly in ceramic coating. Under the action of high energy laser, the ceramic coating generated from the polydimethylsiloxane modified by butyl titanate is composed of crystalline SiC and TiO2, as long as amorphous SiO2, (TiO2)56(SiO2)44 and C6H18OSi2. The formation of new ceramic phase such as TiO2 and (TiO2)56(SiO2)44 can fill the pores and lead to the less porosity of the ceramic coating, and make the coating surface uniform and densified. The study solves the dispersion of active filler of metal powder.
  • [1]
    YANG D, YU Y, ZHAO X, et al. Fabrication of silicon carbide (SiC) coatings from pyrolysis of polycarbosilane/aluminum[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21(3):534. DOI: 10.1007/s10904-011-9481-y
    [2]
    WANG Ch, ZHU D M, ZHOU W C, et al. Research progress in ceramic matrix composites fabrication via filler-assisted precursor infiltration and pyrolysis method[J]. Materials Review, 2014, 28(17):145-150(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb201417027
    [3]
    XIAO P, YANG D X, ZHAO X, et al. Novel chemical method to fabricate SiC/Al2O3 ceramic composite coatings on metallic substrates[J]. China Surface Engineering, 2009, 22(6):24-29(in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-bmgc200906008.htm
    [4]
    WANG K, UNGER J, TORREY J D, et al. Corrosion resistant polymer derived ceramic composite environmental barrier coatings[J]. Journal of the European Ceramic Society, 2014, 34(15):3597-3606. DOI: 10.1016/j.jeurceramsoc.2014.05.036
    [5]
    SEO D, JUNG S, LOMBARDO S J, et al. Fabrication and electrical properties of polymer-derived ceramic (PDC) thin films for high-temperature heat flux sensors[J]. Sensors & Actuators, 2011, A165(2):250-255. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4290fb4bf28bc40d957cb6665f1d3736
    [6]
    BARROSO G S, KRENKEL W, MOTZ G. Low thermal conductivity coating system for application up to 1000℃ by simple PDC processing with active and passive fillers[J]. Journal of the European Ceramic Society, 2015, 35(12):3339-3348. DOI: 10.1016/j.jeurceramsoc.2015.02.006
    [7]
    YUAN J, LUAN X, RIEDEL R, et al. Preparation and hydrothermal corrosion behavior of Cf/SiCN and Cf/SiHfBCN ceramic matrix composites[J]. Journal of the European Ceramic Society, 2015, 35(12):3329-3337. DOI: 10.1016/j.jeurceramsoc.2014.12.009
    [8]
    GOERKE O, FEIKE E, SCHUBERT H. High temperature ceramic matrix composites[M]. Weinheim, Germany:Wiley-VCH Verlag GmbH & Co KGaA, 2006:236-239.
    [9]
    QIAO Y L, XUE Y Ch, LIU J, et al. Prolytic ceramization of polymer precursors on metallic surfaces:perspect and prospect[J]. Materials Review, 2016, 30(6):1-6(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-CLDB201611001.htm
    [10]
    ERNY T, SEIBOLD M, JARCHOW O, et al. Microstructure development of oxycarbide composites during active-filler-controlled polymer pyrolysis[J]. Journal of the American Ceramic Society, 2010, 76(1):207-213. DOI: 10.1111-j.1151-2916.1993.tb03709.x/
    [11]
    CAO Sh W, XIE Zh F, WANG J, et al. Research progress in hetero-elements containing SiC ceramic precursors[J]. Polymer Materials Science & Engineering, 2007, 23(3):1-5(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gfzclkxygc200703001
    [12]
    MULLER A, GERSTEL P, BUTCHEREIT E, et al. Si/B/C/N/Al precursor-derived ceramics:synthesis, high temperature behaviour and oxidation resistance[J]. Journal of the European Ceramic Society, 2004, 24(12):3409-3417. DOI: 10.1016/j.jeurceramsoc.2003.10.018
    [13]
    MOTZ G, HACKER J, ZIEGLER G. Special modified silazanes for coatings, fibers and CMC'S[J]. Ceramic Engineering & Science Proceedings, 2008, 21(4):307-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b4f2b12b8a3d4a6630bdb7ef12e9d6d1
    [14]
    XUE Y Ch, QIAO Y L, LIU J, et al. SiOC ceramic coating prepared by laser pyrolysis liquid polydimethylsiloxane[J]. Journal of the Chinese Ceramic Society, 2016, 44(10):1482-1487(in Ch-inese). http://d.old.wanfangdata.com.cn/Periodical/gsyxb201610015
    [15]
    FRIEDELA T, TRAVITZKYA N, NIEBLINGB F, et al. Fabrication of polymer derived ceramic parts by selective laser curing[J]. Journal of the European Ceramic Society, 2005, 25(2):193-197. http://www.sciencedirect.com/science/article/pii/S0955221904003292
    [16]
    PROUST V, BECHELANY M C, GHISLENI R, et al. Polymer-derived Si-C-Ti systems:from titanium nanoparticle-filled polycarbosilanes to dense monolithic multi-phase components with high hardness[J]. Journal of the European Ceramic Society, 2016, 36(15):3671-3679. DOI: 10.1016/j.jeurceramsoc.2016.04.023
  • Related Articles

    [1]SUN Qing, YANG Linghui. Non-contact measurement method of WMPS based on laser ranging sensors[J]. LASER TECHNOLOGY, 2016, 40(5): 670-675. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.011
    [2]WU Bin, YANG Song. Research of measurement technology of non-orthogonal shaft laser theodolites[J]. LASER TECHNOLOGY, 2015, 39(5): 603-609. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.005
    [3]FAN Yiyan, ZHAO Bin, MA Guolu. Coordinate measurement system of hidden parts based on optical target and rangefinder[J]. LASER TECHNOLOGY, 2014, 38(6): 723-728. DOI: 10.7510/jgjs.issn.1001-3806.2014.06.001
    [4]WANG Gang. Design and study about field diaphragm of receiving optical system in a laser rangefinder[J]. LASER TECHNOLOGY, 2014, 38(5): 647-650. DOI: 10.7510/jgjs.issn.1001-3806.2014.05.015
    [5]HAN Guo-hua, . Application of dual wedges in optical axis alignment for laser rangefinders[J]. LASER TECHNOLOGY, 2012, 36(2): 151-153,159. DOI: 10.3969/j.issn.1001-3806.2012.02.002
    [6]SUN Zhen-wei, LIU Yun-jie. Design of a new performance testing instrument of laser rangefinders[J]. LASER TECHNOLOGY, 2011, 35(6): 792-794. DOI: 10.3969/j.issn.1001-3806.2011.06.019
    [7]XIA Gui-fen, ZHAO Bao-jun, HAN Yue-qiu. Chaotic weak signal detection in the long range laser rangefinders using neural network[J]. LASER TECHNOLOGY, 2006, 30(5): 449-451.
    [8]ZHANG Le, QIN Shi-qiao, WANG Sheng-shu, ZHANG Bao-dong, REN Jian-guo. Mini LD laser rangefinder used in intelligent vehicles[J]. LASER TECHNOLOGY, 2005, 29(2): 130-131,168.
    [9]Zhang Chu, Wang Yuefeng, Niu Yanxiong, Shen Xueju. Rapid fault diagnosis for laser rangefinders[J]. LASER TECHNOLOGY, 2002, 26(4): 292-294.
    [10]Rao Jionghui, Fang Qiwan, Jiang Chuanfu, Wu Huichun, Wang Jizhong, Xu Zhongsheng. Study of system sensitivity of laser rangefinder[J]. LASER TECHNOLOGY, 1996, 20(6): 370-373.

Catalog

    Article views (3) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return