Advanced Search
XIA Gui-fen, ZHAO Bao-jun, HAN Yue-qiu. Chaotic weak signal detection in the long range laser rangefinders using neural network[J]. LASER TECHNOLOGY, 2006, 30(5): 449-451.
Citation: XIA Gui-fen, ZHAO Bao-jun, HAN Yue-qiu. Chaotic weak signal detection in the long range laser rangefinders using neural network[J]. LASER TECHNOLOGY, 2006, 30(5): 449-451.

Chaotic weak signal detection in the long range laser rangefinders using neural network

More Information
  • Received Date: September 26, 2005
  • Revised Date: March 07, 2006
  • Published Date: September 24, 2006
  • To solve the weak target detection under the clutter background,combined with dynamic chaotic model,the chaotic property of the laser echo signal is discussed and a novel algorithm is presented based on chaotic signal detection using neural network predictor.The weak signal in laser clutter background can be detected by means of the prediction error.The simulated results show the algorithm is effective.
  • [1]
    WANG J Y,LU K Ch.The experimental research of the chaotic operation of He-Ne laser and the correlation dimention of its strang attractors[J].Acta Scientiarum Naturalium Universitatis Nankaiensis,1995,28(4):47~50(in Chinese).
    [2]
    LU Y M,LUO Zh X,CHEN W G et al.Phase space reconstruction for noise of the oceanic lidar[J].Laser Technology,1998,22(3):139~143(in Chinese).
    [3]
    LEUNG H.Applying chaos to radar detection in an ocean environ-ment:an experimental study[J].IEEE Journal of Ocean Engineering,1995,20(1):56~64.
    [4]
    HAYKIN S.Detection of signal in chaos[J].Proc IEEE,1995,83(1):95~121.
    [5]
    HENRY H.Signal detection using radial basis function coupled map-lattice[J].IEEE Neural Networks,2000,5(9):1133~1151.
    [6]
    DU P F,WANG Y L.Weak signal detection in the background of chaotic sea clutter[J].Systems Engineering and Electronics,2002,24(7):65~67(in Chinese).
    [7]
    XIE H M,YU B Zh.Detectiong weak signal in chaotic sea clutterusing RBF neural network predictor[J].Modern Radar,2004,26(9):50~55(in Chinese).
    [8]
    HE J H,YANG Z K.Transient signal detection based on chaos and neural network[J].Acta Electronica Sinica,1998,26(10):33~37(in Chinese).
    [9]
    SHEN Ch L,YANG Z K.On the reconstruction of chaotic background signals received during underwater target detection with laser[J].Journal of Huazhong University of Science Technology,1997,25(4):63~65(in Chinese).
    [10]
    LU J H,LU J N.Chaos time series analysis and application[M].Wuhan:Publishing House of Wuhan University,2002.1(in Chinese).
    [11]
    WANG Y N.Intelligent information processing technology[M].Beijing:Higher Education Press,2003.1~12(in Chinese).
    [12]
    ABARBANEL H.The analysis of observed chaotic data in physical systems[J].Reviews of Modern Physics,1993,65(4):1331~1340.
  • Related Articles

    [1]YAN Xin, YING Kaining, DAI Lunan, TAN Junfu, SHEN Zhonghua, NI Chenyin. Research on laser ultrasonic wavefield based on physical-informed neural network[J]. LASER TECHNOLOGY, 2024, 48(1): 105-113. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.017
    [2]GE Yifan, LU Xu, LIU Yuzhu. Research on eggshell via laser-induced breakdown spectroscopy and neural network[J]. LASER TECHNOLOGY, 2022, 46(4): 532-537. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.015
    [3]HUANG Weiwei, YOU Deyong, GAO Xiangdong, ZHANG Yanxi, HUANG Yuhui. Laser welding steady status recognition method based on correlation analysis and neural network[J]. LASER TECHNOLOGY, 2022, 46(3): 312-319. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.004
    [4]WANG Chengliang, YANG Qingsheng, LI Jun, ZHONG Weifeng, CHEN Zhiming. Fast demodulation method of optical fiber temperature and strain based on neural network[J]. LASER TECHNOLOGY, 2022, 46(2): 254-259. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.017
    [5]ZHOU Cong, ZHANG Ling, CHEN Genyu, DENG Hui, CAI Song. Prediction and optimization algorithm of process parameters for laser dressing grinding wheels[J]. LASER TECHNOLOGY, 2015, 39(3): 320-324. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.008
    [6]GUO Huafeng, LI Juli, SUN Tao. Roughness prediction of kerf cut with fiber laser based on BP artificial neural networks[J]. LASER TECHNOLOGY, 2014, 38(6): 798-803. DOI: 10.7510/jgjs.issn.1001-3806.2014.06.016
    [7]ZHANG Wen-bo, ZHANG Qun-li, YAO Jian-hua. Prediction of the pattern of electroless deposit after pulse laser heating via artificial neural network[J]. LASER TECHNOLOGY, 2010, 34(2): 173-177. DOI: 10.3969/j.issn.1001-3806.2010.02.009
    [8]XU Da-peng, ZHOU Jian-zhong, GUO Hua-feng, JI Xia. Quality prediction of laser cladding layer based on improved neural network[J]. LASER TECHNOLOGY, 2007, 31(5): 511-514.
    [9]Mo Changtao, Chen Changzheng, Zhang Lili, Sun Fengjiu. Neural network application in position sensitive detector[J]. LASER TECHNOLOGY, 2003, 27(6): 594-596.
    [10]Yu Zilan, Zhang Yongkang, Gao Chuanyu, Zeng Danyong, Yang Jichang, . Study of the surface qualities of laser shock-processing zones using an artificial neural network[J]. LASER TECHNOLOGY, 2001, 25(1): 1-6.

Catalog

    Article views (0) PDF downloads (21) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return