Advanced Search
FAN Hongying, ZHANG Hao, ZHAO Qi, JIANG Zewei, JIA Jing, CHEN Hao. Parameter measurement of thermal effect of high-energy laser material based H-S wavefront sensor[J]. LASER TECHNOLOGY, 2018, 42(2): 201-205. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.012
Citation: FAN Hongying, ZHANG Hao, ZHAO Qi, JIANG Zewei, JIA Jing, CHEN Hao. Parameter measurement of thermal effect of high-energy laser material based H-S wavefront sensor[J]. LASER TECHNOLOGY, 2018, 42(2): 201-205. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.012

Parameter measurement of thermal effect of high-energy laser material based H-S wavefront sensor

More Information
  • Received Date: May 02, 2017
  • Revised Date: June 23, 2017
  • Published Date: March 24, 2018
  • In order to measure thermal effect parameters of high-energy laser material on-line, a testing device with aperture of 50mm was specially designed. Collimating He-Ne laser was used as light source. The optical-path difference of testing beam after passing the material was measured by Hartmann-Shack wavefront sensor. According to wavefront aberration decomposition theory and wavefront transformation relationship, thermal effect parameters of high-energy laser material were gotten. Measurement uncertainty of the device was analyzed and evaluated. The system parameters which affected measurement uncertainty were calibrated. Finally, a comparative experiment of measurement uncertainty was designed and completed. The result shows that, the measurement uncertainty of system wavefront aberration is 0.06λ. The measurement uncertainty is 8.4% with thermal focal length of 30m~120m. The system can be applied to measure thermal effect parameters of high-energy laser material online.
  • [1]
    FAN T Y. Heat generation in Nd:YAG and Yb:YAG[J]. IEEE Journal of Quantum Electronics, 1993, 29(6):1457-1459. DOI: 10.1109/3.234394
    [2]
    KIMURA T, OTSUKA K. Thermal effects of a continuously pumped Nd3+:YAG laser[J]. IEEE Journal of Quantum Electronics, 1971, 7(8):403-407. DOI: 10.1109/JQE.1971.1076822
    [3]
    UPPAL J, MONGA J, BHAWALDAR D. Study of thermal effects in Nd doped phosphate glass laser rod[J]. IEEE Journal of Quantum Electronics, 1986, 22(12):2259-2265. DOI: 10.1109/JQE.1986.1072930
    [4]
    KOECHNER W. Thermal lensing in a Nd:YAG laser rod[J].Applied Optics, 1970, 9(11):2548-2553. DOI: 10.1364/AO.9.002548
    [5]
    PFISTNER C, WEBER R, WEBER H P, et al. Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG and Nd:YLF rods[J].IEEE Journal of Quantum Electronics, 1994, 30(7):1605-1615. DOI: 10.1109/3.299492
    [6]
    GAO M Y, ZHENG Y. Numerical calculation of thermal effect on laser-diode end-pumped Nd:YVO4 laser[J]. Laser Journal, 2003, 24(2):11-13(in Chinese). http://europepmc.org/articles/PMC1302707/
    [7]
    LI L, SHI P, BAI J T. Semi-analytical thermal analysis of single end-pumped laser crystal temperature distribution[J]. Journal of Xi'an Jiaotong University, 2004, 38(4):369-372(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-XAJT200404010.htm
    [8]
    YU J, TAN H M, QIAN L Sh, et al. Theoretical study on thermal beam focusing in longitudinally-pumped solid-state laser rods[J]. High Power Laser and Particle Beams, 2000, 12(1):27-30(in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-qjgy200001007.htm
    [9]
    ZHENG Y, GAO M Y, YAO J Q. Study on thermal effect of anisotropic laser medium by LD end-pumped[J]. Journal of Optoelectronics Laser, 2003, 14(10):1094-1098(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDZJ200310022.htm
    [10]
    LI F, LIU R, BAI J T, et al. Investigation on temperature and thermal lens effects of laser diode pumped composite YAG rods[J]. Laser Technology, 2008, 32(1):101-104(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS200801030.htm
    [11]
    HOU J Y, WANG Y F, ZHU X P, et al. Numerical simulation of pumping uniformity and thermal effects of LD end-pumped slab amplifier[J]. Laser Technology, 2010, 34(6):802-805(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201006024.htm
    [12]
    BURNHAM D C. Simple measurement of thermal lensing effects in laser rods[J]. Applied Optics, 1970, 9(7):1727-1728. DOI: 10.1364/AO.9.001727
    [13]
    OU Q F, FENG G Y, LIU D P, et al. Simulation and experimental study on thermal effects of Nd:YAG lasers[J]. Laser Technology, 2002, 26(1):15-16(in Chinese). http://d.wanfangdata.com.cn/Periodical/jgjs200201005
    [14]
    ZOU J, ZHAO Sh Zh, YANG K J, et al. Determining the thermal lens focus of LD end-pumped Nd:GdVO4 solid-state laser with CCD detecting method[J]. Laser Technology, 2006, 30(4):422-424(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS200604024.htm
    [15]
    FENG Zh, WAN Y F. Thermal effect of LD end-pumped Nd:GGG laser[J]. Laser Technology, 2014, 38(3):360-363(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjs201702002
    [16]
    LI X, XU X J, XI F J, et al. Measuring thermal focal length with a curvature sensor[J]. High Power Laser and Particle Beams, 2007, 19(9):1465-1468(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-QJGY200709013.htm
    [17]
    LIU M B, LU X M, REN Zh J, et al. Wavefront measurement of crystal dynamic thermal lens effect and thermal abberations in a PW Ti:sapphire laser[J]. Infrared and Laser Engineering, 2011, 40(5):835-839(in Chinese). http://cn.bing.com/academic/profile?id=6fd99d5c83e4835fbc3a51981d8d84bb&encoded=0&v=paper_preview&mkt=zh-cn
    [18]
    ZHAO Q, MENG Q A, JIANG Z W, et al. Study on parameter measurement precision of high energy laser beam with large aperture[J]. Laser Technology, 2015, 39(1):100-103(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201501020.htm
  • Related Articles

    [1]XIA Huijun, YANG Huan, WU Xinming, DENG Wantao, GAO Weixiang, YANG Tianzhi, LI Biaohui. Measurement uncertainty of temperature pulsation meter based on instrument amplifier[J]. LASER TECHNOLOGY, 2025, 49(2): 296-300. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.022
    [2]LI Yuan, CHAI Yanhong, LIU Lanbo, MAO Zhe, ZHAI Xinhua. Research on uncertainty minimum ellipsoid envelope model of laser measurement system[J]. LASER TECHNOLOGY, 2022, 46(3): 293-300. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.001
    [3]ZHANG Hao, DAI Hong, FAN Hongying, CHEN Hao, JIANG Zewei, JIA Jing, MENG Qing'an, HU Shaoyun. Calibration and design of long focal length measurement instruments based on Talbot-Moiré effect[J]. LASER TECHNOLOGY, 2019, 43(4): 527-531. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.016
    [4]LONG Long, LI Zongfeng. 3-D position measurement algorithm based on laser displacement sensors[J]. LASER TECHNOLOGY, 2017, 41(4): 531-536. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.015
    [5]WU Zhaoyong, DU Zhengchun. Uncertainty analysis of laser radar measurement system based on error ellipsoid theory[J]. LASER TECHNOLOGY, 2017, 41(1): 29-33. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.007
    [6]ZHAO Qi, YANG Jie, JIANG Zewei, MENG Qing'an, FAN Hongying, LI Yiguo, GENG Xu. Calibration of measurement uncertainty of forward-scattering spectrometer probes[J]. LASER TECHNOLOGY, 2016, 40(1): 99-102. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.022
    [7]ZHOU Ying, ZHAO Hui, TAO Wei, ZHANG Hai-bo. Adaptive control method for imaging parameters of image sensor in laser triangulation displacement measurement[J]. LASER TECHNOLOGY, 2010, 34(5): 628-631. DOI: 10.3969/j.issn.1001-3806.2010.O5.014
    [8]YAN Shun-sheng, HU Shun-xing, HU Huan-ling, ZHONG Zhi-qing. Uncertainty analysis of aerosol wavelength exponent measured by Raman-Mie lidars[J]. LASER TECHNOLOGY, 2008, 32(6): 667-669,672.
    [9]YANG Shu-lian. Measurement of diffusivity of nanometer material by means of laser photothermal displacement technique[J]. LASER TECHNOLOGY, 2007, 31(1): 29-30.
    [10]ZHANG Peng, SHEN Xue-ju, NIU Yan-xiong, XUE Rui. Measurement of monochrome focal length based on single-slit fractional Fourier transform[J]. LASER TECHNOLOGY, 2005, 29(2): 222-224.
  • Cited by

    Periodical cited type(4)

    1. 冯晓晖. 基于激光定位的非线性故障检测系统. 激光杂志. 2020(01): 81-85 .
    2. 李春光,张晓飞. 基于激光热传感的实验室异常温度监测. 激光杂志. 2020(10): 92-96 .
    3. 张建云,陈帆,马骏,潘少华,魏聪,王敏,刘戴明. 熔融石英基片热形变及其对光束质量的影响分析. 激光技术. 2019(03): 374-379 . 本站查看
    4. 郭宋明,杨帆,张楠,卢佳琦,崔建丰,岱钦. 基于Hartmann-Shack波前传感器的Nd:YAG激光器热焦距测量. 沈阳理工大学学报. 2019(05): 85-88 .

    Other cited types(2)

Catalog

    Article views (8) PDF downloads (5) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return