Advanced Search
LOU Deyuan, XIONG Hou, WU Yigang, ZHAI Zhongsheng, CHEN Lie, QI Dezhong, YANG Qibiao, LIU Dun. Damage threshold and drilling mechanism of aluminum plate by nanosecond laser with different pulse widths[J]. LASER TECHNOLOGY, 2017, 41(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.024
Citation: LOU Deyuan, XIONG Hou, WU Yigang, ZHAI Zhongsheng, CHEN Lie, QI Dezhong, YANG Qibiao, LIU Dun. Damage threshold and drilling mechanism of aluminum plate by nanosecond laser with different pulse widths[J]. LASER TECHNOLOGY, 2017, 41(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.024

Damage threshold and drilling mechanism of aluminum plate by nanosecond laser with different pulse widths

More Information
  • Received Date: April 24, 2016
  • Revised Date: July 05, 2016
  • Published Date: May 24, 2017
  • In order to get the damage features of nanosecond laser pulse width to aluminium and provided the basis for choosing proper pulse width in the processing of metals by nanosecond laser, by using the area calculation method and instruments (optical microscope, scanning electron microscope and surface profiler), the damage thresholds of 37 kinds of nanosecond laser (pulse width of 10ns~520ns, wavelength of 1064nm) on aluminium were obtained. The effects of laser pulse number on damage thresholds of aluminium were analyzed with constant pulse width. The function mechanism of nanosecond laser pulse width on the quality of drilling holes in aluminium was also revealed. The results show that the damage threshold of single pulse is linearly related to the square root of laser pulse width of nanosecond laser. The damage threshold of aluminium decreases with the increase of the number of pulse width. The narrower the pulse width of nanosecond laser is, the higher the damage threshold to aluminium is. Evaporation process occupies the leading position during the drilling process. Furthermore, the less the melted thing on the inner wall of hole is, the better the circular degree of hole will be. The less the spraying materials in the orifice is, the higher the quality of drilling will be. The results provide the guide for choosing proper pulse width in the processing of metals with nanosecond laser.
  • [1]
    WANG X D, MICHALOWSKI A, WALTER D. Laser drilling of stainless steel with nanosecond double pulse[J]. Optics & Laser Technology, 2009, 41(2): 148-153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0575573f2556b5c2e233f68f5ca24d80
    [2]
    WANG X D, ZHAO X M, WANG Sh L, et al. The study on dynamic and high speed laser drilling system[J]. Laser Technology, 2003, 27(6): 563-566(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200306029
    [3]
    WANG Z Y, LI Q. Comparison of drilling between free running and acoustic-optical Q-switch-Ed laser[J]. Chinese Journal of Lasers, 2002, 29(6): 552-555. http://www.opticsjournal.net/ViewObject.htm?oid=OJ130223000197JfMiOl&otype=OJ
    [4]
    TOSTO S. Modeling and computer simulation of pulsed laser induced ablation[J]. Applied Physics, 2002, A68(4): 439-446. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be6fc04cffebde2b78ccea4bb28224f8
    [5]
    HAN Y X, CHEN P F, ZHOU Zh Y, et al. Laser perforating technology of tipping paper[J]. Laser Technology, 2002, 26(5): 330-333 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200205018
    [6]
    CHEN L, WANG J, LIU D. Experimental and mechanism analysis of holes drilling on rubber damping material using nanosecond laser[J]. Acta Optica Sinica, 2015, 35(s2): 173-178 (in Chinese).
    [7]
    ZHANG H, DI J, ZHOU M, et al. A comparison in laser precision drilling of stainless steel 304 with nanosecond and picosecond laser pulses[J]. Chinese Journal of Mechanical Engineering, 2014, 27(5): 972-977. DOI: 10.3901/CJME.2014.0723.125
    [8]
    CHEN X, LOTSHAW W T, ORTIZ A L, et al. Laser drilling of advanced materials: effects of peak power, pulse format and wave length[J]. Journal of Laser Applications, 1996, 8(5): 233-239. DOI: 10.2351/1.4745427
    [9]
    NATH A K. Laser drilling of metallic and nonmetallic substrates[J]. Comprehensive Materials Processing, 2014, 5(9): 177-194. http://www.sciencedirect.com/science/article/pii/B9780080965321009043
    [10]
    MANNION P T, MAGGEE J, COYNE E, et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air[J]. Applied Surface Science, 2004, 233(1/4): 275-287. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f56a7b81079a4efcc221ea43c784a6c
    [11]
    YASEEN N, BASHIR S, SHABBIR M K, et al. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis[J]. Physica: Condensed Matter, 2016, B490: 31-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e3d9657008aabd8fd70b7f3294dd530b
    [12]
    STUART B, FEIT M D, RUBENCHIK A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Physical Review Letters, 1995, 74(12): 2248-2251. DOI: 10.1103/PhysRevLett.74.2248
    [13]
    BULGAKOVA N M, EVTUSHENKO A B, SHUKHOVY G, et al. Role of laser-induced plasma in ultra deep drilling of materials by nanosecond laser pulses[J]. Applied Surface Science, 2011, 257(24): 10876-10882. DOI: 10.1016/j.apsusc.2011.07.126
    [14]
    KRSTULOVIC' N, MILOŠEVIC' S. Drilling enhancement by nanosecond-nanosecond collinear dual-pulse laser ablation of titanium in vacuum[J]. Applied Surface Science, 2010, 256(13): 4142-4148. DOI: 10.1016/j.apsusc.2010.01.098
    [15]
    JYWE W Y, LIU C H, CHEN C K. The min-max problem for evaluating the form error of a circle[J]. Measurement, 1999, 26(4): 273-282. DOI: 10.1016/S0263-2241(99)00052-4
    [16]
    BHARATISH A, MURTHY H, ANAND B, et al. Characterization of hole circularity and heat affected zone in pulsed CO2 laser drilling of alumina ceramics[J]. Optics & Laser Technology, 2013, 53(53): 22-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69fea565fa06a337e15ae728a6c0fd62
  • Cited by

    Periodical cited type(6)

    1. 杨文锋,李天权,林德惠,李绍龙,杨帆. 纳秒激光脉冲宽度对2024铝合金损伤特性的影响. 宇航材料工艺. 2024(01): 36-42 .
    2. 潘瑞,冯英豪,蒋凡,陈树君. 界面间隙对纳秒激光连接石英玻璃/铜的影响. 机械工程学报. 2024(22): 68-75 .
    3. 刘晓东,陈亮,王曦照,熊政军. 紫外激光微铣削Al_2O_3陶瓷盲孔的工艺研究. 激光与光电子学进展. 2021(05): 203-210 .
    4. 明兴祖,申警卫,金磊,明瑞. 脉冲激光精微烧蚀合金钢表面热影响研究. 应用激光. 2020(01): 42-49 .
    5. 吴鹏,范云茹,郭嘉伟,刘晓旭,周强,邓光伟,宋海智,王浟. 纳秒脉冲激光加工高反射率铝膜. 激光技术. 2019(06): 779-783 . 本站查看
    6. 王琪琪,任乃飞,任旭东. GH4037镍基高温合金激光打孔相变过程数值模拟. 激光技术. 2018(06): 764-768 . 本站查看

    Other cited types(5)

Catalog

    Article views (4) PDF downloads (5) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return