Advanced Search
WU Chao, TANG Xiahui, LI Gen, WANG Wei, WANG Zhen. Research on excess noise in negative-branch off-axis confocal unstable resonators[J]. LASER TECHNOLOGY, 2016, 40(6): 882-887. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.022
Citation: WU Chao, TANG Xiahui, LI Gen, WANG Wei, WANG Zhen. Research on excess noise in negative-branch off-axis confocal unstable resonators[J]. LASER TECHNOLOGY, 2016, 40(6): 882-887. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.022

Research on excess noise in negative-branch off-axis confocal unstable resonators

More Information
  • Received Date: October 21, 2015
  • Revised Date: January 07, 2016
  • Published Date: November 24, 2016
  • In order to reduce the broadening of output beam line width in negative-branch off-axis unstable resonator laser, the function relationship between the two main parameters of effective Fresnel number Neff and geometry magnification M and excess noise factor K of output mode was analyzed. From negative branch structure, excess noise factor was firstly presented as functional distribution of transverse mode in output plane based on classical wave equation theory. By using the edge wave method, output transverse mode was approximated as a function of Neff and M. And then, the dependence of K on Neff and M were numerical calculated. The results indicate that K changes quasi-periodically with Neff. The cyclical peak is presented at Neffs+0.85 (s is a positive integer). Output line width is broadened nearly 2000 times of the natural line width. The study is useful for the research of output loss of unstable resonator and provides reference for practical laser designs.
  • [1]
    OU T Y, ZHANG N, PANG Q S, et al. Study on high power green lasers with unstable resonators[J]. Laser Technology, 2012, 36(1):87-89(in Chinese).
    [2]
    WANG C Sh, LI L, SHANG W D, et al. Study on pulsed solid-state lasers with positive branch confocal unstable resonators[J]. Laser Technology, 2013, 37(4):441-444(in Chinese).
    [3]
    PETERMANN K. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding[J]. IEEE Journal of Quantum Electronics, 1979, 15(7):566-570.
    [4]
    HAUS H, KAWAKAMI S. On the excess spontaneous emission factor in gain-guided laser amplifiers[J]. IEEE Journal of Quantum Electronics, 1985, 21(1):63-69.
    [5]
    SIEGMAN A E. Excess spontaneous emission in non-Hermitian optical systems[J]. Physical Review, 1989, A39(3):1253-1263.
    [6]
    KARMAN G P, McDONALD G S, WOERDMAN J P, et al. Excess-noise dependence on intracavity aperture shape[J]. Applied Optics, 1999, 38(33):6874-6878.
    [7]
    van der LEE A M, van DRUTEN N J, MIEREMET A L, et al. Excess quantum noise due to nonorthogonal polarization modes[J]. Physical Review Letters, 1997, 79(22):4357-4360.
    [8]
    BERRY M V. Mode degeneracies and the petermann excess-noise factor for unstable lasers[J]. Journal of Modern Optics, 2003, 50(1):63-81.
    [9]
    LI Zh M, XIN J G. Power output characteristics of RF excited all metal slab waveguide CO2 laser[J]. Infrared and Laser Engineering, 2008, 37(2):230-232(in Chinese).
    [10]
    ZHDANOV B V, SHAFFER M K, KNIZE R J. Cs laser with unstable cavity transversely pumped by multiple diode lasers[J]. Optics Express, 2009, 17(17):14767-14770.
    [11]
    CIOFINI M, FAVILLA E, LAPUCCI A, et al. Propagation parameters of the beam extracted from a diode pumped Nd: YAG ceramic slab laser with a hybrid stable-unstable resonator[J]. Optics Laser Technology, 2007, 39(7):1380-1388.
    [12]
    ZHAO S, HUANG H T, HE J L, et al. High beam quality and compact diode end-pumped Nd:[KG-*2/3] YVO4 slab laser with a hybrid resonator[J]. Laser Physics, 2010, 20(4):781-785.
    [13]
    CHO C Y, HUANG Y P, HUANG Y J, et al. Compact high-pulse-energy passively Q-switched Nd:[KG-*2/3] YLF laser with an ultra-low-magnification unstable resonator:application for efficient optical parametric oscillator[J]. Optics Express, 2013, 21(2):1489-1495.
    [14]
    HALL T, DUSCHEK F, GRUNEWALD K M, et al. Modified negative-branch confocal unstable resonator[J]. Applied Optics, 2006, 45(34):8777-8780.
    [15]
    PARGMANN C, HALL T, DUSCHEK F, et al. Off-axis negative-branch unstable resonator in rectangular geometry[J]. Applied Optics, 2011, 50(1):11-16.
    [16]
    HALL T, DUSCHEK F, GRUNEWALD K M, et al. Modified negative-branch confocal unstable resonator[J]. Applied Optics, 2006, 45(34):8777-8780.
    [17]
    LAUDER M A, NEW G H C. Biorthogonality properties and excess noise factors of unstable optical resonators[J]. Optics Communications, 1988, 67(5):343-348.
    [18]
    CHEN K, ZHU D X, ZHANG P C. Mode analysis of laser resonator based on finite element matrix[J]. Laser Technology, 2014, 38(3):352-356(in Chinese).
    [19]
    LI G, LIANG Y W, TANG X, et al. The approximate analytic solution for the mode of strip negative branch unstable resonators[J]. Optics Communications, 2014, 330(5):71-76.
    [20]
    LI G, TANG X, WANG D, et al. Excess noise in strip off-axis confocal unstable resonators[J]. Journal of Modern Optics, 2012, 59(3):235-240.
  • Related Articles

    [1]LI Congwu, BIAN Li'an. Design of graphene double-mode absrober based on F-P resonance and SPP resonance[J]. LASER TECHNOLOGY, 2021, 45(4): 507-510. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.015
    [2]GUO Tianhua, WANG Yuefeng, YU Guangli. Selection and analysis of theoretical model of fiber Bragg grating external cavity laser diode[J]. LASER TECHNOLOGY, 2017, 41(2): 225-230. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.016
    [3]LIU Ziang, SHI Wei, WANG Cheng. Study on numerical simulation of residual stresses induced by laser shock processing[J]. LASER TECHNOLOGY, 2017, 41(1): 1-5. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.001
    [4]XIA Jing, JIANG Guobao, ZHAO Chujun. Numerical study on thulium-doped mode-locked fiber laser with high modulation depth of saturable absorber[J]. LASER TECHNOLOGY, 2016, 40(4): 571-575. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.024
    [5]WEI Jia-ju, LIANG Yi-ping, DAI Te-li. Numerical analysis of reflection spectrum of linearly chirped fiber Bragg gratings[J]. LASER TECHNOLOGY, 2012, 36(5): 607-611. DOI: 10.3969/j.issn.1001-3806.2012.05.008
    [6]DAI Bao-jiang, CHEN Feng, ZHANG Dong-shi, DU Guang-qing, MENG Xiang-wei. 飞秒激光制备波导型光合波器的数值模拟[J]. LASER TECHNOLOGY, 2012, 36(2): 251-254,264. DOI: 10.3969/j.issn.1001-3806.2012.02.029
    [7]CEN Jia-sheng, WANG Qing-mei, LUO Hui, WU Qiang. Theoretical derivation and numerical analysis for droplet's boundary diffraction[J]. LASER TECHNOLOGY, 2011, 35(6): 837-840,856. DOI: 10.3969/j.issn.1001-3806.2011.06.030
    [8]LIU Shun-hong, JI Qiao-jie, YANG Jing. Numerical simulation on laser bending of steel tubes[J]. LASER TECHNOLOGY, 2006, 30(4): 355-359.
    [9]Wang Jing, Wang Zhen-li. Initial chirp's effect on chirp caused by polarization modes coupling[J]. LASER TECHNOLOGY, 2003, 27(4): 371-373.
    [10]Liu Shun-hong, Wan Peng-teng, Yang Jing. Development of numerical simulation in laser bending[J]. LASER TECHNOLOGY, 2002, 26(3): 161-164.

Catalog

    Article views (3) PDF downloads (4) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return