Advanced Search
WU Xiangwei, GUO Baofeng, CHEN Chunzhong, SHEN Honghai. Anomaly detection based weighted combination kernel RX algorithm and its parameter selection[J]. LASER TECHNOLOGY, 2015, 39(6): 745-750. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.003
Citation: WU Xiangwei, GUO Baofeng, CHEN Chunzhong, SHEN Honghai. Anomaly detection based weighted combination kernel RX algorithm and its parameter selection[J]. LASER TECHNOLOGY, 2015, 39(6): 745-750. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.003

Anomaly detection based weighted combination kernel RX algorithm and its parameter selection

More Information
  • Received Date: October 09, 2014
  • Revised Date: November 30, 2014
  • Published Date: November 24, 2015
  • In order to combine the spectral shape difference information and the polynomial kernel function global information, exploit the object feature fully and improve the accuracy of anomaly detection, anomaly detection method was proposed based on weighted combination kernel RX algorithm. A spectral angle kernel function was added to Gaussian kernel function in the anomaly detection method. Because the kernels' parameter and the weighting parameter will affect the efficiency of the algorithm, the random function selection, the hill climbing method and the particle swarm optimization algorithm were implemented for setting the above parameters. Experiment results show that at a constant false alarm rate, it is the best to set the parameters by means of the particle swarm algorithm. Target detection rate is 83.5% by using the weighted combination kernel RX algorithm, higher than that by means of the traditional kernel RX algorithm.
  • [1]
    MATTEOLI S, DIANI M, CORSINI G. A tutorial overview of anomaly detection in hyperspectral images [J]. IEEE Transactions on Aerospace and Electronic Systems Magazine, 2010, 25(7): 5-28.
    [2]
    ECHES O, DOBIGEON N, TOURNERET J Y. Enhancing hyperspectral image unmixing with spatial correlations [J]. IEEE Transactions on Geosciences and Remote Sensing, 2011, 49(11): 4239-4247.
    [3]
    KWON H, DER S Z, NASRABADI N M. Adaptive anomaly detection using subspace separation for hyperspectral imagery [J]. Optical Engineering, 2003, 42(11): 3342-3351.
    [4]
    REED I S, YU X L. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution [J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(10): 1760-1770.
    [5]
    KWON H, NASRABADI N M. Kernel RX algorithm a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geosciences and Remote Sensing, 2005, 43(2): 388-397.
    [6]
    WANG L P, ZHANG L P, HAN J T. Detecting algorithm of moving target in dynamic background based on gray-weighted kernel function [J]. Infrared and Laser Engineering, 2013, 42(12): 3453-3457 (in Chinese).
    [7]
    CHEN D R, SUN B, TAO P, et al. Spatial neighboring clustering method for hyperspectral imagery based on kernel spectral angel cosine [J]. Acta Electronica Sinica, 2008, 36(10): 1992-1995(in Chinese).
    [8]
    HAN J, YUE J, ZHANG Y, et al. SAM weighted KEST algorithm for anomaly detection in hyperspectral imagery [J]. Journal of Infrared and Millimeter Waves, 2013, 32(4): 359-365(in Chinese).
    [9]
    WANG S B. Study on anomaly target detection technology in hyperspectral images [D]. Haerbin: Harbin Institute of Technology, 2010: 22-35(in Chinese).
    [10]
    WU X M. The research on hyperspectral imagery unmixing technology based on kernel methods [D]. Hangzhou:Zhejiang University, 2011: 15-33(in Chinese).
    [11]
    WANG Ch. Research on multiple kernel learning based target interpretation technologies in hyperspectral imagery [D].Haerbin: Harbin Institute of Technology, 2011: 13-23(in Chinese).
    [12]
    GAN P P, WANG R Sh. Spectral remote sensing recognition basis and technology research [J]. Remote Sensing Technology and Application, 2002, 17(3): 53-60(in Chinese).
    [13]
    SHAWE-TAYLOR J, CRISTIANINI N. Pattern recognition of kernel method [M]. 2nd ed. Beijing: China Machine Press, 2006: 29-50(in Chinese).
    [14]
    DANG J W, WANG Y P, DI F W, et al. Artificial intelligence [M]. Beijing: Electronic Industry Press, 2012: 178-180(in Chinese).
    [15]
    EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science. New York, USA : IEEE , 1995: 39-43.
    [16]
    GAO X J. On classification of hyperspectral remotely sensed imagery based on support vector machines[D]. Hangzhou: Hangzhou Dianzi University, 2012: 42-44 (in Chinese) .
    [17]
    LIANG Zh J, WANG K F, GU G Q, et al . Digital speckle image correlation method base on particle swarm optimization algorithm[J]. Laser Technology, 2014, 38(5): 603-607 (in Chinese).
  • Related Articles

    [1]XIA Huijun, YANG Huan, WU Xinming, DENG Wantao, GAO Weixiang, YANG Tianzhi, LI Biaohui. Measurement uncertainty of temperature pulsation meter based on instrument amplifier[J]. LASER TECHNOLOGY, 2025, 49(2): 296-300. DOI: 10.7510/jgjs.issn.1001-3806.2025.02.022
    [2]LI Yuan, CHAI Yanhong, LIU Lanbo, MAO Zhe, ZHAI Xinhua. Research on uncertainty minimum ellipsoid envelope model of laser measurement system[J]. LASER TECHNOLOGY, 2022, 46(3): 293-300. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.001
    [3]ZHANG Hao, DAI Hong, FAN Hongying, CHEN Hao, JIANG Zewei, JIA Jing, MENG Qing'an, HU Shaoyun. Calibration and design of long focal length measurement instruments based on Talbot-Moiré effect[J]. LASER TECHNOLOGY, 2019, 43(4): 527-531. DOI: 10.7510/jgjs.issn.1001-3806.2019.04.016
    [4]LONG Long, LI Zongfeng. 3-D position measurement algorithm based on laser displacement sensors[J]. LASER TECHNOLOGY, 2017, 41(4): 531-536. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.015
    [5]WU Zhaoyong, DU Zhengchun. Uncertainty analysis of laser radar measurement system based on error ellipsoid theory[J]. LASER TECHNOLOGY, 2017, 41(1): 29-33. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.007
    [6]ZHAO Qi, YANG Jie, JIANG Zewei, MENG Qing'an, FAN Hongying, LI Yiguo, GENG Xu. Calibration of measurement uncertainty of forward-scattering spectrometer probes[J]. LASER TECHNOLOGY, 2016, 40(1): 99-102. DOI: 10.7510/jgjs.issn.1001-3806.2016.01.022
    [7]ZHOU Ying, ZHAO Hui, TAO Wei, ZHANG Hai-bo. Adaptive control method for imaging parameters of image sensor in laser triangulation displacement measurement[J]. LASER TECHNOLOGY, 2010, 34(5): 628-631. DOI: 10.3969/j.issn.1001-3806.2010.O5.014
    [8]YAN Shun-sheng, HU Shun-xing, HU Huan-ling, ZHONG Zhi-qing. Uncertainty analysis of aerosol wavelength exponent measured by Raman-Mie lidars[J]. LASER TECHNOLOGY, 2008, 32(6): 667-669,672.
    [9]YANG Shu-lian. Measurement of diffusivity of nanometer material by means of laser photothermal displacement technique[J]. LASER TECHNOLOGY, 2007, 31(1): 29-30.
    [10]ZHANG Peng, SHEN Xue-ju, NIU Yan-xiong, XUE Rui. Measurement of monochrome focal length based on single-slit fractional Fourier transform[J]. LASER TECHNOLOGY, 2005, 29(2): 222-224.
  • Cited by

    Periodical cited type(2)

    1. 秦树旺,毛耀,包启亮. 光电跟踪系统的模糊Ⅱ型控制技术研究. 激光技术. 2021(02): 147-154 . 本站查看
    2. 郑羽,李东,王艳林. 基于FPGA的精密指向组件控制系统设计. 工业控制计算机. 2019(07): 12-14+17 .

    Other cited types(3)

Catalog

    Article views (4) PDF downloads (12) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return