Advanced Search
SONG Bin, YANG Huixian, ZENG Jinfang, TAN Zhenghua, LI Cuiju. 2-D minimum error threshold segmentation method based on mean absolute deviation from the median[J]. LASER TECHNOLOGY, 2015, 39(5): 717-722. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.028
Citation: SONG Bin, YANG Huixian, ZENG Jinfang, TAN Zhenghua, LI Cuiju. 2-D minimum error threshold segmentation method based on mean absolute deviation from the median[J]. LASER TECHNOLOGY, 2015, 39(5): 717-722. DOI: 10.7510/jgjs.issn.1001-3806.2015.05.028

2-D minimum error threshold segmentation method based on mean absolute deviation from the median

More Information
  • Received Date: July 29, 2014
  • Revised Date: September 04, 2014
  • Published Date: September 24, 2015
  • In order to solve the problem that 2-D minimum error threshold segmentation (METS) method had poor segment robust performance on an image which presents skew distribution and heavy-tailed distribution, an improved 2-D METS method was proposed based on mean absolute deviation from the median. Considering that the median was a more robust estimator of gray level than the mean in 1-D histogram of skew distribution and heavy-tailed distribution, variance in 2-D METS was replaced by mean absolute deviation from the median. In order to improve the computational speed, a 2-D algorithm was decomposed into two 1-D algorithms. Experimental results show that, compared with 2-D Otsu method, 2-D METS method and other classical algorithms, the improved 2-D METS method based on mean absolute deviation has more accurate segmentation results and more robust performance for 1-D histogram with skew distribution and heavy-tailed distribution.
  • [1]
    DIRAMI A, HAMMOUCHE K, DIAF M, et al.Fast multilevel thresholding for image segmentation through a multiphase level set method[J]. Signal Processing,2013,93(1):139-153.
    [2]
    MOGHADDAM R F, CHERIET M. AdOtsu:An adaptive and parameterless generalization of Otsu's method for document image binarization[J]. Pattern Recognition,2012,45(6):2419-2431.
    [3]
    SATHYA P D, KAYALVIZHI R. Amended bacterial foraging algorithm for multilevel thresholding of magnetic resonace brain images[J].Measurement,2011,44(10):1828-1848.
    [4]
    KITTLER J, ILLINGWORHT J. Minimum error thresholding [J]. Pattern Recognition, 1986,19(1):41-47.
    [5]
    GONG J, LI L Y, CHEN W N. Fast recursive algorithms for two-dimensional thresholding[J].Pattern Recognition,1998,31(3):295-300.
    [6]
    SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation [J]. Journal of Electronic Imaging,2004,13(1):146-168.
    [7]
    FAN J L, LEI B. Two-dimensional extension of minimum error threshold segmentation method for gray-level images[J]. Acta Automatica Sinica,2009,35(4):386-393(in Chinese).
    [8]
    ZHU D Q, JING L Q, BI R S, et al. Improvement algorithm of minimum-error thresholding segmentation method[J]. Opto-Electronic Engineering,2010,37(7):107-113(in Chinese).
    [9]
    WU Y Q, ZHANG X J, WU Sh H, et al. Two-dimensional minimum error thresholding based on chaotic particle swarm optimization or decomposition[J]. Journal of Zhejiang University(Engineer Science Edition),2011,45(7):1198-1205(in Chinese).
    [10]
    ZHANG X M, FENG W H, HE W T, et al. Two-dimensional minimum error thresholding method nased on the artificial bee colony algorithm[J]. Journal of Guangxi University(Natural Science Edition),2013, 38(5):1126-1133(in Chinese).
    [11]
    XUE J H, TITTERINGTON D M. Median-based image thresholding[J]. Image and Vision Computing,2011,29(9):631-637.
    [12]
    LIU J, YU Z B, JIN W D. Three dimentional minimum error thres-hold algorithm and its fast recursive mathod[J].Journal of Electronics Information Technology,2013,35(9):2073-2080(in Chinese).
    [13]
    CUI T Y, LIU W P, ZHANG N. Algorithms and performance comparison of automatic thresholdingsegmentation for forest regions in remote sensing image[J]. Journal of Computer Applications,2010,30(12):3269-3273(in Chinese).
    [14]
    YUE F, ZUO W M, WANG K Q. Decomposition based two-dimensional thresholdalgorithm for grayimages[J]. Acta Automatica Sinica,2009,35(7): 1022-1027(in Chinese).
    [15]
    GONG Q, NI L, TANG P F, et al. Fast three-dimensional Otsu image segmentation algorithm based on decomposition[J]. Journal of Computer Applications,2012,32(6):1526-1528(in Chinese).
  • Cited by

    Periodical cited type(9)

    1. 孔彦坤,邓伟,金国忠,雷基林,陈丽琼,贾德文. 36MnVS4和46MnVS5连杆裂解性能差异性研究及质量缺陷分析. 中国机械工程. 2024(06): 1103-1111+1119 .
    2. 刘友健,雷智洪,吴俊伟,陈燕,纪轩荣. 超快激光制备高频1-3型PIN-PMN-PT复合材料超声换能器. 压电与声光. 2023(02): 288-293 .
    3. 王冠,陈国华,诸杰煜,汪春辉. 激光加工工艺参数对36MnVS4连杆切槽质量影响研究. 激光杂志. 2023(08): 198-205 .
    4. 林晓平,王冠,张冲,汪春辉,刘赞丰,张雅文. 光纤激光垂直加工连杆裂解槽装备设计. 组合机床与自动化加工技术. 2022(03): 134-137 .
    5. 张冲,王冠,刘赞丰,张雅文. 激光微加工对Ti6Al4V表面形貌及润湿性影响的研究. 激光技术. 2021(01): 31-36 . 本站查看
    6. 赵士伟,张海云,李志永,赵玉刚,张晋烨. 激光参量对血管支架切缝形貌及粗糙度的影响. 激光技术. 2020(03): 299-303 . 本站查看
    7. 寇淑清,修亭亭,金文明,赵勇,姚娟. 后桥主减速器壳体轴承座材料裂解性能数值分析. 华南理工大学学报(自然科学版). 2019(07): 121-127+135 .
    8. 郭树霞. 改进蚁群算法下激光切割加工工艺优化研究. 机电信息. 2019(24): 94-95 .
    9. 赵三军,赵水,张志强,贾斌,陈绍磊,周玉梅,姜冰,吴军. 激光切割8 mm厚锰钢板的工艺试验研究. 制造技术与机床. 2019(09): 70-73 .

    Other cited types(7)

Catalog

    Article views (6) PDF downloads (6) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return