Advanced Search
WANG Yunping, ZHANG Haiyang, ZHENG Xingyuan, FENG Shuang, ZHAO Changming. Analysis of interference mechanism of high-frequency laser to laser guided weapons[J]. LASER TECHNOLOGY, 2014, 38(1): 21-25. DOI: 10.7510/jgjs.issn.1001-3806.2014.01.005
Citation: WANG Yunping, ZHANG Haiyang, ZHENG Xingyuan, FENG Shuang, ZHAO Changming. Analysis of interference mechanism of high-frequency laser to laser guided weapons[J]. LASER TECHNOLOGY, 2014, 38(1): 21-25. DOI: 10.7510/jgjs.issn.1001-3806.2014.01.005

Analysis of interference mechanism of high-frequency laser to laser guided weapons

More Information
  • Received Date: May 07, 2013
  • Revised Date: May 26, 2013
  • Published Date: January 24, 2014
  • In order to study the interference mechanism of high-frequency laser to laser guided weapons, according to the principle of high-frequency laser interference,a series of related theoretical models such as semi-active laser seeker coded identification model, time door model, multi-signal processing model and interference signal modulation processing model were established. Then the 3σ criterion was proposed for interfering the seeker effectively. Based on this, the study of the effect of multi-source interference and signal characteristics of the effect of high repetition frequency laser interference were studied. According to the simulation system testing, the results show that the multi-source interference and interference signal frequency modulation can effectively enhance the interference effect. While the interference effect of the interference signal amplitude modulation is not obvious. The research results will provide the evaluation of high-frequency laser interference effect and provide theoretical references for application of high-frequency laser interference system.
  • [1]
    XIE X Ch. Performance of high-repetition-rate laser jamming laser seeker[J]. Aerospace Electronic Warfare, 2005, 21(5):23-25(in Chinese).
    [2]
    ZHU Ch Ch, NIE J S, TONG Zh Ch, et al. Analysis on the mode of high repetition laser jamming[J]. Infrared and Laser Engineering, 2009, 38(6):1060-1063(in Chinese).
    [3]
    ZHANG H W, ZHAO W, JI X, et al. Jamming effect of the high-repetition-frequency laser to the laser seeker[J]. Electro-Optic Technology Application, 2009, 24(1):26-28(in Chinese).
    [4]
    XU P Ch, SUN X Q. Analysis of high repetition frequency laser interference with real time gate signal[J]. Electro-Optic Techno-logy Application, 2005, 20 (1):21-23(in Chinese).
    [5]
    TONG Zh Ch. Simulation research on ahead-time of laser-angle-cheating jamming signal[J]. Journal of China Ordnance, 2008, 29(5):633-636(in Chinese).
    [6]
    XUE J G, CHEN Y. Research on the jamming effect of the high repetition laser to the laser guidance[J]. Aero Weaponry, 2006(3):30-32(in Chinese).
    [7]
    XU D Sh, WANG J Y. Interactional effect between a suppressive laser jammer with high frequency and a laser guidance system[J]. Chinese Journal of Quantum Electronics, 2006, 23(2):209-211(in Chinese).
    [8]
    TONG Zh Ch, SUN X Q, YANG X W. High-PPS laser jamming technology based on ballistic simulation[J]. Electronics Optics & Control, 2008, 15(3):14-18(in Chinese).
    [9]
    TONG Zh Ch, SUN X Q, YANG X W, et al. Simulation of laser-barrage-jamming for laser-guided weapon[J]. Journal of Ballistics, 2008, 20 (1):106-110(in Chinese).
    [10]
    TONG Zh Ch, SUN X Q, HAN Ch L, et al. Modeling and simulation of laser jam for laser-guiding weapon[J].Journal of System Simulation, 2007, 19(22):5115-5119(in Chinese).
  • Related Articles

    [1]GAO Jinquan, ZHOU Zhenglan, XU Huafeng, WU Bin, QU Jun. Modal intensity of partially coherent Airy vortex beams in non-Kolmogorov turbulence[J]. LASER TECHNOLOGY, 2021, 45(4): 522-529. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.018
    [2]HUANG Yan. Study on propagation characteristics of Gaussian-Schell model pulses in single-mode optical fibers[J]. LASER TECHNOLOGY, 2019, 43(6): 841-845. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.020
    [3]BAO Xunwang, YUAN Yangsheng, CUI Zhifeng, QU Jun. M2 factor of disturbed Bessel-Gaussian beam propagating in turbulent atmosphere[J]. LASER TECHNOLOGY, 2018, 42(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.026
    [4]CHEN Kai, ZHU Dongxu, JIAO Hongwei. Polarization properties of Gaussian-Schell model beams passing through focal optical system[J]. LASER TECHNOLOGY, 2014, 38(2): 246-250. DOI: 10.7510/jgjs.issn.1001-3806.2014.02.021
    [5]ZHENG Zhen, LIU Yong-xin, . Propagation properties of Hermite-Laguerre-Gaussian beams[J]. LASER TECHNOLOGY, 2005, 29(6): 641-644.
    [6]LIU Cai-xia, HU Ji-gang, DENG Xiao-jiu, YANG Yan-fan. Study on the beam quality factor of sinh-Gaussian(ShG) beams[J]. LASER TECHNOLOGY, 2005, 29(4): 443-445.
    [7]WEN Qiao, ZHANG Bin. M2-factor, mode decomposition and beam combining of partially coherent flat-topped beams[J]. LASER TECHNOLOGY, 2005, 29(1): 68-71.
    [8]PENG Yuan-jie, LÜ Bai-da. Second-order moments matrix and M2 factor of optical beams[J]. LASER TECHNOLOGY, 2004, 28(6): 648-651.
    [9]Niu Yanxiong, Wang Yuefeng, Liu Xin, Zhang Chu, Zhu Shoushen. Laser beam quality factor M2 and its measurement[J]. LASER TECHNOLOGY, 1999, 23(1): 38-41.
    [10]Chen Peifeng, Qiu Junlin. Light beam propagation features defined by propagation factor M2[J]. LASER TECHNOLOGY, 1996, 20(1): 46-49.
  • Cited by

    Periodical cited type(17)

    1. 查冰婷,徐光博,秦建新,张合. 多发多收周视激光引信时刻鉴别方法. 兵工学报. 2024(11): 4145-4154 .
    2. 熊丽丽,冯丽佳,苑柳青. 基于深度卷积神经网络的激光雷达图像轮廓线提取方法. 激光杂志. 2023(10): 94-99 .
    3. 赵毅强,张琦,刘长龙,武唯康,李尧. 结合物理与几何特性的机载LiDAR数据分类方法. 红外与激光工程. 2023(11): 9-20 .
    4. 贾权,郭计云,盛彬. 激光雷达硬件故障数据的模式识别研究. 激光杂志. 2022(04): 195-199 .
    5. 唐春兰. 基于卷积神经网络的近红外光谱文本数据匹配检测方法. 激光杂志. 2022(10): 106-110 .
    6. 赵炳炎,陈宗华,赵刘英. 基于Matlab的量子激光雷达稳频通信模拟系统设计. 激光杂志. 2021(02): 161-165 .
    7. 韦复国,邱世平. 激光雷达技术在森林资源监测中的研究进展. 林业调查规划. 2021(01): 18-22+95 .
    8. 翟宇,韩绍坤,李孟瑶,孟宪童,李俊. 基于全波形采样的APD阵列激光雷达系统研究. 光学技术. 2021(02): 149-154 .
    9. 宫海晓,贺杰,杨秋慧. 机载激光雷达扫描三维地形的渲染研究. 激光杂志. 2021(04): 179-182 .
    10. 富帅,倪建军,闫静纯,于双江,刘涛. 基于时钟网络的高速数据采集与处理系统设计. 太赫兹科学与电子信息学报. 2021(02): 228-234 .
    11. 蒋心学,唐飞笼,杨迪. 机载三维激光点云数据分类数学模型. 激光杂志. 2021(07): 142-146 .
    12. 闫晶,连婷,林海霞. 合成孔径激光雷达的目标重构方法. 激光杂志. 2021(07): 176-179 .
    13. 王欣,翟羽婷,史春燕. 基于光纤耦合的RDF数据差异性检测系统设计. 激光杂志. 2021(11): 139-143 .
    14. 奚东升,郭建勋,薛飞. 基于激光雷达扫描的输电空间三维数据协同方法. 电子设计工程. 2020(24): 57-60+65 .
    15. 崔健. 基于机载激光雷达的树木倒伏隐患分析. 环境技术. 2020(06): 191-195 .
    16. 苑宁萍,宁鹏飞. 海量激光传感器数据的自适应无损压缩研究. 激光杂志. 2019(10): 143-146 .
    17. 丁征凯. 机载激光雷达数据在输电线路终勘选线中的运用分析. 通讯世界. 2018(09): 193-194 .

    Other cited types(6)

Catalog

    Article views (4) PDF downloads (31) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return