Advanced Search
YANG Chen-guang, XU Yong-yue, ZUO Du-luo. Study on emission spectrum of self-sustained volume discharge[J]. LASER TECHNOLOGY, 2013, 37(5): 642-646. DOI: 10.7510/jgjs.issn.1001-3806.2013.05.017
Citation: YANG Chen-guang, XU Yong-yue, ZUO Du-luo. Study on emission spectrum of self-sustained volume discharge[J]. LASER TECHNOLOGY, 2013, 37(5): 642-646. DOI: 10.7510/jgjs.issn.1001-3806.2013.05.017

Study on emission spectrum of self-sustained volume discharge

More Information
  • Received Date: November 08, 2012
  • Revised Date: December 18, 2012
  • Published Date: September 24, 2013
  • In order to measure the evolution of gas temperature during self-sustained volume discharge, the second positive spectra of nitrogen was analyzed using fitting spectra method. Plasma time-domain resolution molecular spectra of two transversely excited atmospheric(TEA)gas laser discharge systems (excimer laser fast discharge system and TEA CO2 laser slow discharge system) were measured. Gas rotational temperature was fitted to obtain the data of gas temperature evolution of two discharge structures. The results show that the rising temperature is 92K while the total of inject energy density is 1.3105 J/m3 of excimer laser fast discharge system and the rising temperature is 50K while the total of inject energy density is 7104 J/m3 of TEA CO2 laser slow discharge system. The ratio of the rising temperature of these two systems is proportional to the raio of the inject energy density of these two systems. These results are helpful to study self-sustained volume discharge mechanism and improve discharge stability.
  • [1]
    OSIPOV V V. Self-sustained volume discharge[J]. Physics-Uspekhi,2000,43(3): 221-241.
    [2]
    APOLLONOV V V. High-power self-controlled volumne-discharge-based molecular lasers[J]. Optical Engineering,2004,43(1): 1-18.
    [3]
    BILOIU C,SUN X,HARVEY Z,et al. An alternative method for gas temperature determination in nitrogen plasmas: fits of the bands of the first positive system(B3gA3u)[J]. Journal of Applied Physics,2007,101(7): 073303.
    [4]
    YANG Ch G, XU Y Y, ZUO D L. Temperature characteristic of cathode sheath in high-pressure volumn discharge derived from emanuting shock wave[J]. Chinese Physics Letters,2012,29(12):125201.
    [5]
    BILOIU C,SUN X,HARVEY Z,et al. Determination of rotational and vibrational temperatures of a nitrogen helicon plasma[J]. Review of Scientific Instruments,2006,77(10): 10F117.
    [6]
    MARIOTTI D, SANKARAN R M. Perspective on atmospheric-pressure plasmas for nanofabrication[J]. Journal of Physics,2011,44(17):174023.
    [7]
    MARIOTTI D, SANKARAN R M. Microplasmas for nanofabrication synthesis[J]. Journal of Physics,2010,D43(32):323001.
    [8]
    LAROUSSI M,LU X P.Room-temperature atmospheric pressure plasma plume for biomedical applications[J]. Applied Physics Letter,2005,87(11): 113902.
    [9]
    SAKAMOTO T,MATSUURA H,AKATSUKA H. Spectroscopic study on the vibrational population of N2 C3 and B3 states in a microwave nitrogen discharge[J]. Journal of Applied Physics,2007,101(2): 023307.
    [10]
    HERZBERG G. Molecular spectra and molecular structureⅠ: spectra of diatomic molecules[M]. Malabar, India: Krieger,1989:159.
    [11]
    ROUX F,MICHAUD F. High-resolution Fourier spectrometry of 14 N2: analysis of the (0-0),(0-1),(0-2),(0-3) bands of the C3u~B3g system[J]. Canadian Journal of Physics,1989,67(1):143.
  • Related Articles

    [1]WANG Jianying, LIU Zhichao, LIN Xuezhu, HOU Maosheng, LI Lijuan. Fiber Bragg grating strain detection system for digital calibration[J]. LASER TECHNOLOGY, 2020, 44(5): 570-574. DOI: 10.7510/jgjs.issn.1001-3806.2020.05.008
    [2]LI Xiaoxiao, ZHANG Zhiheng, ZHANG Xiaoyu, CAO Jiejun, CAO Zhaolou. Non-contact thickness measurement of optical elements based on astigmatism[J]. LASER TECHNOLOGY, 2019, 43(6): 741-746. DOI: 10.7510/jgjs.issn.1001-3806.2019.06.002
    [3]YAO Hongbing, LI Lilin, CHEN Mingming, YANG Fengxiao. Design of measurement system of lens center thickness based on double-side optical confocal technology[J]. LASER TECHNOLOGY, 2016, 40(6): 912-915. DOI: 10.7510/jgjs.issn.1001-3806.2016.06.028
    [4]SUN Qing, YANG Linghui. Non-contact measurement method of WMPS based on laser ranging sensors[J]. LASER TECHNOLOGY, 2016, 40(5): 670-675. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.011
    [5]FAN Yiyan, ZHAO Bin, MA Guolu. Coordinate measurement system of hidden parts based on optical target and rangefinder[J]. LASER TECHNOLOGY, 2014, 38(6): 723-728. DOI: 10.7510/jgjs.issn.1001-3806.2014.06.001
    [6]HE Xin, ZHANG Bin, ZHOU Kun. 基于虚拟仪器的激光光斑自动采集与分析系统[J]. LASER TECHNOLOGY, 2012, 36(2): 238-242. DOI: 10.3969/j.issn.1001-3806.2012.02.025
    [7]ZHOU Wei-jun, YUAN Yong-hua, GUI Yuan-zhen. Simple time measurement of TiO2/SiO2 film damaged by laser[J]. LASER TECHNOLOGY, 2007, 31(4): 381-383.
    [8]Wang Guifu, Chen Guilin, Chen Yuliang. A digital angle measurement technique based on Michelson interferometer[J]. LASER TECHNOLOGY, 2001, 25(5): 338-343.
    [9]Lin Hua, Wang Xiaoqiu. PSD and its application in non contact measurement[J]. LASER TECHNOLOGY, 1998, 22(1): 52-54.
    [10]Wu Min, Lai Kangsheng. Design of optical system for laser digitizer[J]. LASER TECHNOLOGY, 1995, 19(1): 42-45.

Catalog

    Article views (3) PDF downloads (14) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return