Advanced Search
ZAKIR Arkin, MAMAT Mamatrishat, AIMIDULA Aimierding, DULAT Sayipjamal, . Kinetic energy of accelerated electrons in laser-driven wakefield[J]. LASER TECHNOLOGY, 2010, 34(3): 422-424. DOI: 10.3969/j.issn.1001-3806.2010.03.038
Citation: ZAKIR Arkin, MAMAT Mamatrishat, AIMIDULA Aimierding, DULAT Sayipjamal, . Kinetic energy of accelerated electrons in laser-driven wakefield[J]. LASER TECHNOLOGY, 2010, 34(3): 422-424. DOI: 10.3969/j.issn.1001-3806.2010.03.038

Kinetic energy of accelerated electrons in laser-driven wakefield

More Information
  • Received Date: March 17, 2009
  • Revised Date: May 10, 2009
  • Published Date: May 24, 2010
  • In order to study kinetic energy of accelerated electrons in a laser-driven wakefield,maximum and minimum potential of the wakefield that could determine the maximum kinetic energy of the electrons was found by applying the particle in cell method.The peak and valley potential of the plasma wakefield and its relations to laser pulse length and intensity were discussed.It is shown that the maximum energy of a trapped electron is proportional to the intensity of the laser pulse and it reaches maximum value when the laser pulse length equals to nearly ten times of the wavelength.
  • [1]
    BULANOV S S,BRANTOV A,BYCHENKOV V,et al.Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-coulomb-explosion regime[J].Phys Rev,2008,78(2):026412/1-026412/6.
    [1]
    TAJIMA T,DAWSON J M.Laser electron accelerator[J].Phys Rev Lett,1979,43(4):267-270.
    [2]
    PUKHOV A,KOSTYUKOV I.Control of laser-wakefield acceleration by the plasma-density profile[J].Phys Rev,2008,E77(2):025401/1-025401/4.
    [3]
    SHENG Z M,MEYERTER V J.Relativistic wave breaking in warm plasmas[J].Physics of Plasmas,1997,4(2):493-495.
    [4]
    BULANOV S V,PEGORARO F,PUKHOV A M.et al.Transverse-wake wave breaking[J].Phys Rev Lett,1997,78(22):4205-4208.
    [5]
    MALKA V,FRITZLER S,LEFEBVRE E,et al.Electron acceleration by a wake field forced by an intense ultrashort laser pulse[J].Science,2002,298(5598):1596-1600.
    [6]
    MODENA A,NAJMUDIN Z,DANGOR A E,et al.Electron acceleration from the breaking of relativistic plasma-waves[J].Nature,1995,377(6550):606-608.
    [7]
    NAJMUDIN Z,TATARAKIS M,PUKHOV A,et al.Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma[J].Phys Rev Lett,2001,87(21):215004/1-215004/4.
    [8]
    LIU X L,LIU S Q,YANG X S.Strong Langmuir turbulence excited by laser near critical surface[J].Laser Technology,2007,31(2):213-216(in Chinese).
    [9]
    ZHOU S Y,L IU S Q,TAO X Y.Simulation of density solitons and self-generated magnetic f ield in laser plasma[J].Laser Technology,2007,31(1):8-11(in Chinese).
    [10]
    ESIRKEPOV T,BULANOV S V,YAMAGIWA M,et al.Electron,positron,and photonwakefield acceleration:trapping wake overtaking,and ponderomotive acceleration[J].Phys Rev Lett,2006,96(1):014803/1-014803/4.
    [11]
    BULANOV S V,YAMAGIWA M,ESIRKEPOV T,et al.Spectral and dynamical features of the electron bunch accelerated by a short-pulse high intensity laser in an underdense plasma[J].Physics of Plasmas,2005,12(7):073103/1-073103/11.
  • Cited by

    Periodical cited type(8)

    1. 孟惠,王明军,宁铎,任神河. 拉盖尔-高斯光束在拓扑绝缘体分层介质薄膜的相位分布. 激光与光电子学进展. 2022(05): 306-311 .
    2. 杜娇,段美玲,张秀清,赵慧芳,崔文丽. 部分相干光束在生物组织中的传输行为. 光电子·激光. 2022(09): 1001-1008 .
    3. 位毅帆. 空心光束的产生及其在现代光学中的应用. 内江科技. 2019(02): 63+32 .
    4. 靳龙,张兴强. 圆形周期介质内艾里光束的传输特性. 激光技术. 2019(03): 432-436 . 本站查看
    5. 黄石明,聂建业,张蓉竹. 偏振方向对涡旋光束产生的影响. 强激光与粒子束. 2018(07): 15-19 .
    6. 汪慧超,胡阿健,陈培锋. 空间光调制器产生拉盖尔-高斯光束方法研究. 激光技术. 2017(03): 447-450 . 本站查看
    7. 李瑶,莫伟成,杨振刚,刘劲松,王可嘉. 利用超表面天线阵列产生太赫兹涡旋光束. 激光技术. 2017(05): 644-648 . 本站查看
    8. 张虹霞,严云富. 无源光接入网络中前向纠错编码技术. 激光杂志. 2017(10): 152-155 .

    Other cited types(14)

Catalog

    Article views (2) PDF downloads (4) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return