Citation: | LI Yao, MO Weicheng, YANG Zhengang, LIU Jinsong, WANG Kejia. Generation of terahertz vortex beams base on metasurface antenna array[J]. LASER TECHNOLOGY, 2017, 41(5): 644-648. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.005 |
[1] |
WANG B, ZHANG Y. Design and application of THz metamaterials and matesurfaces[J].Journal of Terahertz Science and Electronic Information Technology, 2015, 13(1):1-12(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-XXYD201501002.htm
|
[2] |
CHEN H T, TAYLOR A J, YU N F. A review of metasurfaces:physics and applications[J]. Report on Progress in Physical Society, 2016, 79(7):076401. DOI: 10.1088/0034-4885/79/7/076401
|
[3] |
HOLLOWAY C L, DIENSTFREY A, KUESTER E F, et al. A discussion on the interpretation and characterization of metafilms/metasurfaces:The two-dimensional equivalent of metamaterials[J]. Metamaterials, 2009, 3(2):100-112. http://www.sciencedirect.com/science/article/pii/S1873198809000231
|
[4] |
SKALAEV M I, SUN J B, TSUKERNIK A, et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode[J]. Nano Letters, 2015, 15(9):6261-6266. DOI: 10.1021/acs.nanolett.5b02926
|
[5] |
YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337. DOI: 10.1126/science.1210713
|
[6] |
QIN F, DING L, ZHANG L, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1):1501168. http://pubmedcentralcanada.ca/pmcc/articles/PMC4705036/
|
[7] |
MO W C, WEI X L, WANG K J, et al. Ultrathin flexible terahertz polarization converter based on metasurfaces[J]. Optics Express, 2016, 24(12):13622-13627. http://europepmc.org/abstract/med/27410377
|
[8] |
HU D, WANG X K, FENG S F, et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 2013, 1(2):186-191. DOI: 10.1002/adom.201200044/pdf
|
[9] |
GENEVET P, YU N F, AIETA F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Le-tters, 2012, 100(1):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=81bc74a41e54f60d775a9cf27a96cb75
|
[10] |
HE J W, WANG X K, HU D, et al. Generation and evolution of the terahertz vortex beam[J]. Optics Express, 2013, 21(17):20230-20239. DOI: 10.1364/OE.21.020230
|
[11] |
YANG Y M, WANG W Y, MOITRA P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3):1394-1399. DOI: 10.1021/nl4044482
|
[12] |
ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and transformation of Laguerre Gaussian laser modes[J]. Physical Review, 1992, A45(11):8185-8189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0210219387
|
[13] |
BLACK L J, WANG Y D, GROOT C H, et al. Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces[J]. Acs Nano, 2014, 8(6):6390-6399. DOI: 10.1021/nn501889s
|
[14] |
WANG W, GUO Z Y, LI R Z, et al. Plasmonics metalens independent from the incident polarizations[J]. Optics Express, 2015, 23(13):16782-16791. DOI: 10.1364/OE.23.016782
|
[15] |
YU N F, GENEVET P, AIETA F, et al. Flat optics:Controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3):4700423. DOI: 10.1109/JSTQE.2013.2241399
|
[16] |
WEI Y, ZHU Y Y. Analysis of phase change of Laguerre-Gaussian vortex beam during propagation[J]. Laser Technology, 2015, 39(5):723-726(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201505029
|
[17] |
ZHANG Y X, XU J C, SI C F, et al. Effect of turbulent tilt, coma and astigmatism on orbital angular momentum state of laser beam[J]. Laser Technology, 2010, 34(6):747-749(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201006008
|
[18] |
MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844):313-316. DOI: 10.1038/35085529
|
1. |
牛昊,王永丽,姜增璇,李川川,魏志鹏,宋国峰. 基于集成氮化硅超表面VCSEL的涡旋光输出. 发光学报. 2025(02): 326-333 .
![]() | |
2. |
张莉,孙俊. 基于几何相位的高透射型太赫兹超表面设计. 现代电子技术. 2024(03): 7-11 .
![]() | |
3. |
张莉,孙俊. 基于几何相位的超表面产生宽带太赫兹涡旋波束的设计. 激光杂志. 2024(06): 44-48 .
![]() | |
4. |
梁庆宣,尹浩宇,李赵辉,段玉冰,王昕,李涤尘. 超表面异质结构的熔融沉积复合成形工艺及其电磁伪装性能研究. 机械工程学报. 2022(03): 276-283 .
![]() | |
5. |
罗文峰,李新慧,吕淑媛,贾洁. 双波长偏振控制超表面透镜的设计. 西北工业大学学报. 2022(01): 215-221 .
![]() | |
6. |
罗蒙. 一种产生涡旋光束的勾型阵列超表面结构设计. 激光与光电子学进展. 2021(01): 152-157 .
![]() | |
7. |
刘嘉伟,聂仲泉. 紧聚焦的角向偏振艾里光束产生超分辨光针. 激光技术. 2021(03): 390-395 .
![]() | |
8. |
黄晗,黄志高,曾永西. 基于锥形天线阵产生太赫兹伪贝塞尔波束. 三明学院学报. 2020(06): 56-62 .
![]() | |
9. |
茅晨曦,臧小飞,朱亦鸣. 太赫兹近场涡旋光束的干涉. 中国激光. 2019(01): 346-352 .
![]() | |
10. |
周璐,赵国忠,李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报. 2019(10): 297-304 .
![]() | |
11. |
马宇,张浩,刘婷,章海锋. 一种“风车”形单元平面反射阵列天线的设计. 南京师大学报(自然科学版). 2019(02): 81-86 .
![]() | |
12. |
章海锋. 3维函数光子晶体的特性研究. 激光技术. 2018(03): 318-324 .
![]() | |
13. |
杨靖,章海锋,张浩,刘佳轩. 基于等离子体超材料的超宽带吸波体设计. 激光与光电子学进展. 2018(09): 346-354 .
![]() | |
14. |
李文煜,章海锋,刘婷,马宇. 一种波束扫描固态等离子体超表面的设计. 激光技术. 2018(06): 822-826 .
![]() |