Advanced Search
HUANG Wan-qing, FENG Bin, LI Fu-quan, HAN Wei, WANG Fang, ZHENG Wan-guo. Light intensification by non-absorbing bulk defects in fused silica optics at the rear surface[J]. LASER TECHNOLOGY, 2010, 34(3): 417-421. DOI: 10.3969/j.issn.1001-3806.2010.03.037
Citation: HUANG Wan-qing, FENG Bin, LI Fu-quan, HAN Wei, WANG Fang, ZHENG Wan-guo. Light intensification by non-absorbing bulk defects in fused silica optics at the rear surface[J]. LASER TECHNOLOGY, 2010, 34(3): 417-421. DOI: 10.3969/j.issn.1001-3806.2010.03.037

Light intensification by non-absorbing bulk defects in fused silica optics at the rear surface

More Information
  • Received Date: April 08, 2009
  • Revised Date: May 03, 2009
  • Published Date: May 24, 2010
  • For the purpose of studying the damage and beam quality deterioration caused by the non-absorbing inclusions in the fused silica optics,the scattering and the nonlinear propagation of the light field were simulated by finite difference time domain and split Fourier arithmetic respectively.The simulation shows the voids and zirconia inclusions in radius comparable to the wavelength amplify the electromagnetic field amplitude by about 1.6 and 1.9 and after the nonlinear transportation the modulation increases and the beam splits.The results present that the bulk inclusions could cause damage at the rear surface and deterioration of the beam quality.
  • [1]
    CHEN F,MENG S X.Mechanism of laser damage[J].Progress in Physics,1998,18(2):187-206(in Chinese).
    [1]
    HUNT J T.National ignition facility performance review 1999[R].California:Lawrence Livermore National Laboratory,1999:201-238.
    [2]
    ZHOU W J,YUAN Y H,ZHANG D Y,et al.Research on damage of TiO2/SiO2 film induced by 1.06μm CW laser[J].Laser Technology,2006,30(1):76-77(in Chinese).
    [3]
    FLECK J A,LAYNE C.Study of self-focusing damage in a high power Nd:glass amplifier[J].A P L,1973,22(9):467-469.
    [4]
    YEE K S.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J].IEEE Trans Antennas and Propagation,1966,14(3):302-307.
    [5]
    TAFLOVE A.Computational electrodynamics:the finite difference time domain method[M].2nd ed.Massachusetts:Artech House,2000:71-81.
    [6]
    SHEN Y R.The principles of nonlinear optics[M].New York:John Willy & Sons,Inc.,1984:50-51.
    [7]
    TAHA T R,ABLOWITZ M J.Analytical and numerical aspects of certain nonlinear evolution equations.Ⅲ.Numerical korteweg-de vries equation[J].Journal of Computational Physics,1984,55(2):203-231.
    [8]
    SULLIVAN D M.A simplified PML for use with the FDTD method[J].Microwave and Guided Wave Letters,1996,6(2):97-99.
    [9]
    MUR G.Absorbing boundary conditions for the finite-difference approximation of the time domain electromagnetic field equations[J].IEEE Transactions on Electromagnetic Compatibility,1981,23(4):377-382.
    [10]
    SULLIVAN D M.Electromagnetic simulation using the FDTD method[M].New York:IEEE Press,2000:4-5.
    [11]
    AUERBACK J M,EIMERL D,MILAM D,et al.Perturbation theory for electric field amplitude and phase ripple transfer in frequency doubling and tripling[J].Appl Opt,1997,36(3):606-612.
    [12]
    FEIT M D,RUBENCHIK A M.Laser intensity modulation by nonabsorbing defects[J].Proc SPIE,1996,2966:475-480.
  • Cited by

    Periodical cited type(8)

    1. 孟惠,王明军,宁铎,任神河. 拉盖尔-高斯光束在拓扑绝缘体分层介质薄膜的相位分布. 激光与光电子学进展. 2022(05): 306-311 .
    2. 杜娇,段美玲,张秀清,赵慧芳,崔文丽. 部分相干光束在生物组织中的传输行为. 光电子·激光. 2022(09): 1001-1008 .
    3. 位毅帆. 空心光束的产生及其在现代光学中的应用. 内江科技. 2019(02): 63+32 .
    4. 靳龙,张兴强. 圆形周期介质内艾里光束的传输特性. 激光技术. 2019(03): 432-436 . 本站查看
    5. 黄石明,聂建业,张蓉竹. 偏振方向对涡旋光束产生的影响. 强激光与粒子束. 2018(07): 15-19 .
    6. 汪慧超,胡阿健,陈培锋. 空间光调制器产生拉盖尔-高斯光束方法研究. 激光技术. 2017(03): 447-450 . 本站查看
    7. 李瑶,莫伟成,杨振刚,刘劲松,王可嘉. 利用超表面天线阵列产生太赫兹涡旋光束. 激光技术. 2017(05): 644-648 . 本站查看
    8. 张虹霞,严云富. 无源光接入网络中前向纠错编码技术. 激光杂志. 2017(10): 152-155 .

    Other cited types(14)

Catalog

    Article views (1) PDF downloads (4) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return