Advanced Search
ZHAO Anan, ZHANG Hongshuai, YAN Guoqiang, GUO Yuewen. Thermal stress coupling analysis on laser engraving of aluminum alloys with protective coatings for chemical milling[J]. LASER TECHNOLOGY, 2023, 47(3): 419-424. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.021
Citation: ZHAO Anan, ZHANG Hongshuai, YAN Guoqiang, GUO Yuewen. Thermal stress coupling analysis on laser engraving of aluminum alloys with protective coatings for chemical milling[J]. LASER TECHNOLOGY, 2023, 47(3): 419-424. DOI: 10.7510/jgjs.issn.1001-3806.2023.03.021

Thermal stress coupling analysis on laser engraving of aluminum alloys with protective coatings for chemical milling

More Information
  • Received Date: March 13, 2022
  • Revised Date: June 13, 2022
  • Published Date: May 24, 2023
  • According to the phenomena of interface cracking and falling off of protective coatings caused by different thermophysical parameters between protective coatings and aluminum alloy in the process of laser engraving, a two-dimensional finite element model of multi layer materials was established based on the thermal stress coupling analysis method. The pulsed laser was loaded on the surface of protective coatings in the form of Gaussian distributed heat flux. The stress distribution nephogram of aluminum alloy matrix and the evolution law of kerf morphology of protective coatings under the action of thermal stress with different laser processing parameters were obtained by calculation. The effects of laser power, scanning speed, and repetition frequency on temperature field, stress field, engraving morphology, and stress displacement were compared and analyzed, respectively. The results show that when the parameters are selected as power 60 W, scanning speed 10 m/min and repetition frequency 100 kHz, the influence on temperature field, stress field, etching morphology, and stress displacement is minimal. The research of this paper has great reference significance for the practical application of laser engraving in chemical milling, and provides a direction for the process optimization of laser engraving.
  • [1]
    周礼君, 赵晴, 杜楠, 等. TC4钛合金化学铣切槽液调整与再生[J]. 表面技术, 2018, 47(4): 190-195. DOI: 10.16490/j.cnki.issn.1001-3660.2018.04.028

    ZHOU L J, ZHAO Q, DU N, et al. Adjustment and regeneration of TC4 titanium alloy chemical milling groove fluid[J]. Surface Technology, 2018, 47(4): 190-195(in Chinese). DOI: 10.16490/j.cnki.issn.1001-3660.2018.04.028
    [2]
    刘会军, 乔永莲, 董宇, 等. 芬顿氧化法处理铝合金化铣清洗液的研究[J]. 表面技术, 2017, 46(2): 220-223. DOI: 10.16490/j.cnki.issn.1001-3660.2017.02.037

    LIU H J, QIAO Y L, DONG Y, et al. Study on treatment of aluminum alloy milling cleaning fluid by fenton oxidation[J]. Surface Technology, 2017, 46(2): 220-223(in Chinese). DOI: 10.16490/j.cnki.issn.1001-3660.2017.02.037
    [3]
    易慧芝, 邓飞跃, 张忠亭. 2197铝锂合金化学铣切工艺研究[J]. 表面技术, 2010, 39(4): 73-76. DOI: 10.3969/j.issn.1001-3660.2010.04.022

    YI H Zh, DENG F Y, ZHANG Zh T. Research on chemical milling technology of 2197 Al-Li alloy[J]. Surface Technology, 2010, 39(4): 73-76(in Chinese). DOI: 10.3969/j.issn.1001-3660.2010.04.022
    [4]
    LI Q S, WANG J H, HU W B. Optimizations of electric current assisted chemical milling condition of 2219 aluminum alloy[J]. Journal of Materials Processing Technology, 2016, 249: 379-385.
    [5]
    HOT J, DASQUE A, TOPALOV J, et al. Titanium valorization: From chemical milling baths to air depollution applications[J]. Journal of Cleaner Production, 2020, 249: 119344. DOI: 10.1016/j.jclepro.2019.119344
    [6]
    EVANGELOS N, ARISTOMENIS A. FEM modeling and simulation of kerf formation in the nanosecond pulsed laser engraving process[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35: 236-249. DOI: 10.1016/j.cirpj.2021.06.014
    [7]
    翟兆阳, 梅雪松, 王文君, 等. 碳化硅陶瓷基复合材料激光刻蚀技术研究进展[J]. 中国激光, 2020, 47(6): 600002. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202006002.htm

    ZHAI Zh Y, MEI X S, WANG W J, et al. Research progress of laser etching technology of silicon carbide ceramic matrix composites[J]. Chinese Journal of Lasers, 2020, 47(6): 600002(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ202006002.htm
    [8]
    ZHAI Z Y, WANG W J, ZHAO J, et al. Influence of surface morphology on processing of C/SiC composites via femtosecond laser[J]. Composites, 2017, A102: 117-125.
    [9]
    ZHAI Z Y, WEI C, ZHANG Y C, et al. Investigations on the oxidation phenomenon of SiC/SiC fabricated by high repetition frequency femtosecond laser[J]. Applied Surface Science, 2020, 502: 144131. DOI: 10.1016/j.apsusc.2019.144131
    [10]
    LIU C, ZHANG X Z, GAO L, et al. Feasibility of micro-hole machining in fiber laser trepan drilling of 2.5D Cf/SiC composite: Experimental investigation and optimization[J]. Optik, 2021, 242: 167186. DOI: 10.1016/j.ijleo.2021.167186
    [11]
    CHEONG H G, CHU C N, KWON K K, et al. Micro-structuring silicon compound ceramics using nanosecond pulsed laser assisted by hydrothermal reaction[J]. Journal of Manufacturing Processes, 2020, 50: 34-46.
    [12]
    李浩宇, 杨峰, 郭嘉伟, 等. 激光清洗的发展现状与前景[J]. 激光技术, 2021, 45(5): 654-661. DOI: 10.7510/jgjs.issn.1001-3806.2021.05.020

    LI H Y, YANG F, GUO J W, et al. The development status and prospect of laser cleaning[J]. Laser Technology, 2021, 45(5): 654-661(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.05.020
    [13]
    朱小伟, 胡龙, 杨文峰, 等. 基于CFRP纤维编制网格分块扫描的激光除胶工艺算法[J]. 激光技术, 2021, 45(6): 745-750. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.012

    ZHU X W, HU L, YANG W F, et al. Laser degumming process algorithm based on block scanning of CFRP fiber woven mesh[J]. Laser Technology, 2021, 45(6): 745-750(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.06.012
    [14]
    KIRILLOV A G, SAKEVICH V N, TROCHIMCZUK R. Automated laser engraving system for the calibration and manufacturing of nonlinear scales for electrical measuring instruments[J]. Proceedings of the Institution of Mechanical Engineers, 2019, E233(4): 849-856.
    [15]
    洪帅, 邹松华, 王帅东, 等. 铝合金表面化铣保护胶层激光刻型的可行性分析[J]. 电镀与涂饰, 2018, 37(24): 1139-1142. https://www.cnki.com.cn/Article/CJFDTOTAL-DDTL201824005.htm

    HONG Sh, ZOU S H, WANG Sh D, et al. Feasibility analysis of laser engraving on aluminum alloy surface milling protective adhesive layer[J]. Plating and Finishing, 2018, 37(24): 1139-1142(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DDTL201824005.htm
    [16]
    姚芳萍, 房立金, 李金华, 等. 激光功率对激光熔覆Ni基涂层温度场和应力场的影响[J]. 塑性工程学报, 2021, 28(11): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC202111013.htm

    YAO F P, FANG L J, LI J H, et al. Effect of laser power on temperature field and stress field of laser cladding Ni-based coatings[J]. Journal of Plastic Engineering, 2021, 28(11): 87-94(in Ch-inese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXGC202111013.htm
    [17]
    刘冬冬. 热障涂层微观形貌的热力行为研究及数值模拟[D]. 成都: 西南交通大学, 2018: 45-56.

    LIU D D. Thermal behavior study and numerical simulation of thermal barrier coating micro topography[D]. Chengdu: Southwest Jiaotong University, 2018: 45-56(in Chinese).
    [18]
    XIE L S, CHEN X Y, YAN H P, et al. Experimental research on the technical parameters of laser engraving[J]. Journal of Physics, 2020, 1646(1): 012091.
    [19]
    吴涛. 基于铁基复合材料激光熔覆多物理场耦合数值仿真[D]. 上海: 华东交通大学, 2020: 21-23.

    WU T. Numerical simulation of multiphysics coupling based on laser cladding of iron matrix composites[D]. Shanghai: East China Jiaotong University, 2020: 21-23(in Chinese).
    [20]
    CHAI Q, FANG C, QIU X L, et al. Modeling of temperature field and profile of Ni60AA formed on cylindrical 316 stainless steel by laser cladding[J]. Surface and Coatings Technology, 2021, 428: 127865.
    [21]
    廖红星, 宋鹏, 周会会, 等. 陶瓷层与界面孔隙率对热障涂层寿命及其失效机制的影响[J]. 复合材料学报, 2016, 33(8): 1785-1793. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201608025.htm

    LIAO H X, SONG P, ZHOU H H, et al. Effects of ceramic layer and interface porosity on the life and failure mechanisms of thermal barrier coatings[J]. Journal of Composite Materials, 2016, 33(8): 1785-1793(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201608025.htm
    [22]
    RAD M R, FARRAHIA G H, AZADI M, et al. Stress analysis of thermal barrier coating system subjected to out-of-phase thermo-mechanical loadings considering roughness and porosity effect[J]. Surface and Coatings Technology, 2015, 262: 77-86.
    [23]
    WANG R J, DUAN W Q, WANG K D, et al. Computational and experimental study on hole evolution and delamination in laser drilling of thermal barrier coated nickel superalloy[J]. Optics and Lasers in Engineering, 2018, 107: 161-175.
  • Related Articles

    [1]LI Zhong, LIU Jia, BAI Chenming, ZHANG Yaliang, YANG Yudong. Study on effect of ultrasonic on laser-arc hybrid welding of aluminum alloy[J]. LASER TECHNOLOGY, 2019, 43(3): 301-306. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.003
    [2]LI Zhong, WANG Tao, LIU Jia, SHI Yan, BAI Chenming, LI Hongxing. Effect of process parameters on corrosion resistance of aluminum alloy hybrid welded joints[J]. LASER TECHNOLOGY, 2019, 43(2): 189-194. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.008
    [3]YU Shiwen, ZHOU Kun, ZHANG Wei, WANG Weixin, LIU Jufeng, YE Bing. Laser-weaving welding of 5183 aluminum alloy plate with 6.0mm thickness[J]. LASER TECHNOLOGY, 2018, 42(2): 254-258. DOI: 10.7510/jgjs.issn.1001-3806.2018.02.022
    [4]WEI Xinlei, LI Chunlin, XUE Wei, ZHANG Jian, ZHU Dehua, CAO Yu. Smart phone recognition characteristics of laser marking barcodes on aluminum alloy surface[J]. LASER TECHNOLOGY, 2016, 40(5): 633-637. DOI: 10.7510/jgjs.issn.1001-3806.2016.05.004
    [5]ZHANG Jixiang, LIU Fengzhi, GAO Bo, YIN Xiaoyi, YANG Pan. Affecting factors of pulse laser welding property of Al-Mg series aluminum alloy[J]. LASER TECHNOLOGY, 2015, 39(6): 863-868. DOI: 10.7510/jgjs.issn.1001-3806.2015.06.028
    [6]ZOU Yu-feng, JIN Xiang-zhong, HE Yi-ning, ZHANG Hong-gui, YANG Hong-liang. Study on improving mechanical properties of the welds by filling magnesium powder during laser welding 5052 aluminum alloy[J]. LASER TECHNOLOGY, 2013, 37(6): 712-717. DOI: 10.7510/jgjs.issn.1001-3806.2013.06.002
    [7]ZHANG Hong-gui, JIN Xiang-zhong, CHEN Gen-yu, ZHANG Ming-jun, ZOU Yu-feng. Study on the burning loss of magnesium element in fiber laser welding aluminum alloy 5052[J]. LASER TECHNOLOGY, 2012, 36(6): 713-718. DOI: 10.3969/j.issn.1001-3806.2012.06.001
    [8]ZHANG Da-wen, ZHANG Hong, LIU Jia, SHI Yan. Experiment study of aluminum alloy continuous-pulsed laser welding process[J]. LASER TECHNOLOGY, 2012, 36(4): 453-458. DOI: 10.3969/j.issn.1001-806.2012.04.006
    [9]Fan Yong, Wang Sheng-bo, Wu Hong-xing, Guo Da-hao, Dai Yu-sheng, Xia Xiao-ping. Experimental research of laser shock processing on aerial aluminum alloy[J]. LASER TECHNOLOGY, 2003, 27(4): 273-275.
    [10]Luo Hong, Hu Lunji, Huang Shuhuai, Liu Jianghua, Hu Xiyuan. Laser welding of aluminum alloys[J]. LASER TECHNOLOGY, 1998, 22(2): 94-98.

Catalog

    Article views (7) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return