Advanced Search
HUANG Haibo, SUN Wenlei. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. LASER TECHNOLOGY, 2021, 45(6): 788-793. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019
Citation: HUANG Haibo, SUN Wenlei. Influence of laser cladding process parameters on crack and thickness of Ni60[J]. LASER TECHNOLOGY, 2021, 45(6): 788-793. DOI: 10.7510/jgjs.issn.1001-3806.2021.06.019

Influence of laser cladding process parameters on crack and thickness of Ni60

More Information
  • Received Date: December 06, 2020
  • Revised Date: December 21, 2020
  • Published Date: November 24, 2021
  • In order to study the influence of process parameters on crack and thickness of Ni60 laser cladding, the orthogonal experiment was designed by laser cladding Ni60 powder on the surface of 45# steel. The primary and secondary factors affecting the crack formation and coating thickness were analyzed, then, the range analysis method was carried out to obtain the optimal process parameters with the least cracks.The result showesthat the affecting order of crack is that scanning speed > powder feeding rate > laser power; and the process parameters with the least cracks areas follows: Laser power is 1400W, scanning speed is 4.0mm/s, powder feeding rate is 1.0r/min, and thereis only a short crack at the initial position of cladding by using the process parameter. The order of influence on coating thickness is as follows: powder feeding rate > scanning speed. Through microhardness test, the hardness of cladding layer is 3.3 times of that of substrate. Through scanning electron microscope analysis, the grain structure of cladding layer is uniform, and a good metallurgical combination with substrateis formed, which provided a reference for the engineering application of Ni60 alloy powder laser cladding.
  • [1]
    XU B Sh. Remanufacture engineering and its development in China[J]. China Surface Engineering, 2010, 23(2): 1-6(in Chinese).
    [2]
    HAN Y Y, LU J J, LI J F, et al. Lathe spindle remanufacturing based on laser cladding technology[J]. China Surface Engineering, 2015, 28(6): 147-153(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-BMGC201506025.htm
    [3]
    LU Y Zh, LEI W N, REN W B, et al. Matching and strengthening between Inconel718 cladding and K418 alloy blades by laser remanufacturing[J]. Laser Technology, 2020, 44(1): 54-60(in Chinese).
    [4]
    GUO Sh R, SHANG H Ch, CUI L J, et al. Effects of laser cladding layers width on total indicated runout characteristics of steam turbine rotor surface[J]. Rare Metal Materials and Engineering, 2017, 46(3): 612-616. DOI: 10.1016/S1875-5372(17)30105-4
    [5]
    GUO Sh R, YAO J H. Research on microstructure of laser cladding coatings on the surface of steam turbine rotor[J]. Laser & Infrared, 2016, 46(5): 532-536(in Chinese).
    [6]
    CHEN L, GU Ch Zh, XIE P L. Numerical analysis of temperature field in laser cladding on tooth surface of helical gear shaft[J]. Chin-ese Journal of Lasers, 2011, 38(3): 0303006(in Chinese). DOI: 10.3788/CJL201138.0303006
    [7]
    CUI L J, YU J H, GUO Sh R, et al. Laser cladding process and experimental study of pick based on Ni-based alloy[J]. Applied Laser, 2018, 38(5): 720-725(in Chinese).
    [8]
    PENARANDA X, MORALEJO S, LAMIKIZ A, et al. An adaptive laser cladding methodology for blade tip repair[J]. International Journal of Advanced Manufacturing Technology, 2017, 92 (9/12): 4337-4343. http://www.onacademic.com/detail/journal_1000039910334410_6e8e.html
    [9]
    CALLEJA A, TABERNERO I, EALO J A, et al. Feed rate calculation algorithm for the homogeneous material deposition of blisk blades by 5-axis laser cladding[J]. International Journal of Advanced Manufacturing Technology, 2014, 74 (9/12): 1219-1228. http://www.onacademic.com/detail/journal_1000036871379910_3cbb.html
    [10]
    ZHAI J H, XU H Y, LIU Zh J, et al. Experimental study on laser cladding of Ni-based alloys on spheroidal graphite cast iron surface[J]. Laser & Optoelectronics Progress, 2017, 54 (10): 101412(in Chinese). http://www.researchgate.net/publication/320286288_Experimental_Study_on_Laser_Cladding_of_Ni-Based_Alloys_on_Spheroidal_Graphite_Cast_Iron_Surface
    [11]
    ZHOU Sh F, ZENG X Y, HU Q W. Realization of laser cladding and crack-free ceramic-metal composite coatings[J]. Journal of Applied Optics, 2008, 29(1): 76-80(in Chinese). http://www.opticsjournal.net/Abstract.htm?aid=OJ080817000129HeKgNj
    [12]
    ZHENG Ch Zh. Study on crack mechanism of laser cladding Ni based alloy[J]. China Metal Bulletin, 2018, 998(11): 83-84(in Chinese).
    [13]
    CAO Y N, ZHANG Y M, JIE X H, et al. Study on control of crack in laser cladding Ni-based coating on steel[J]. Hot Working Technology, 2012, 41(18): 133-136(in Chinese).
    [14]
    FU F X, CHANG G R, ZHAO X X, et al. Influence of laser spot diameter on cladding layer cracking[J]. Laser & Optoelectronics Progress, 2015, 52(3): 031401(in Chinese). http://www.opticsjournal.net/ViewObject.htm?oid=OJ150205000004iORnUq&otype=OJ
    [15]
    LIU P L, SUN W L, WANG K D, et al. Effect of scanning speed on the properties of laser cladding nickel-based alloy coating[J]. Laser Technology, 2018, 42(6): 845-848(in Chinese).
    [16]
    HAO Y B, WANG J, YANG P, et al. Microstructures and properties of tin-based babbitt metal prepared by laser cladding deposition[J]. Chinese Journal of Lasers, 2020, 47(8): 0802009(in Chin-ese). DOI: 10.3788/CJL202047.0802009
    [17]
    ZHANG F Zh, SUN W L, WANG K D, et al. Optimization of laser cladding repair process parameters for thin-wall parts[J]. Surface Technology, 2019, 48(1): 168-174(in Chinese). DOI: 10.1007/s00170-020-05969-5
    [18]
    LIU H F, TAN C K I, WEI Y F, et al. Laser-cladding and interface evolutions of Inconel625 alloy on low alloy steel substrate upon heat and chemical treatments[J]. Surface and Coatings Technology, 2020, 404 (12): 126607. http://www.sciencedirect.com/science/article/pii/S0257897220312779
    [19]
    CHEN S, LI R, ZHENG Q, et al. Layered microstructure distribution and forming mechanism of laser-processed Ni-Fe-B-Si-Nb-C amorphous composite coatings[J]. Materials Transactions, 2016, 57(10): 1807-1810. DOI: 10.2320/matertrans.M2016189
    [20]
    WANG Zh Y, LIN J, LEI Y P, et al. Microstructure and properties of Stellite6 coating prepared by laser cladding[J]. Laser & Infrared, 2020, 50(10): 1172-1177(in Chinese). http://www.sciencedirect.com/science/article/pii/S1003632620652736
  • Related Articles

    [1]LÜ Zishang, HU Jinhua, REN Danping, ZHAO Jijun. Research on temperature strain sensing characteristics of flat top CLPG-CFBG cascade structure[J]. LASER TECHNOLOGY, 2024, 48(1): 65-70. DOI: 10.7510/jgjs.issn.1001-3806.2024.01.011
    [2]WANG Chengliang, YANG Qingsheng, LI Jun, ZHONG Weifeng, CHEN Zhiming. Fast demodulation method of optical fiber temperature and strain based on neural network[J]. LASER TECHNOLOGY, 2022, 46(2): 254-259. DOI: 10.7510/jgjs.issn.1001-3806.2022.02.017
    [3]WANG Gao, ZHANG Meiju, HUANG Manguo, LIANG Xiaobo, LIU Zhichao. Research on load sensing system based on orthogonal fiber grating array[J]. LASER TECHNOLOGY, 2021, 45(2): 143-146. DOI: 10.7510/jgjs.issn.1001-3806.2021.02.003
    [4]LI Wenwen, LIU Shupeng, WANG Zhongyang. Fast super-resolution fluorescence microscopy by compressed sensing[J]. LASER TECHNOLOGY, 2020, 44(2): 196-201. DOI: 10.7510/jgjs.issn.1001-3806.2020.02.010
    [5]YANG Zhengli, SHI Wen, CHEN Haixia. Adaptive compression sensing of optical fiber perimeter alarm signal[J]. LASER TECHNOLOGY, 2020, 44(1): 74-80. DOI: 10.7510/jgjs.issn.1001-3806.2020.01.013
    [6]ZHANG Jian, HUA Yinqun, CAO Jiangdong. Simulation of propagation characteristics of stress wave in copper films with laser shock processing[J]. LASER TECHNOLOGY, 2016, 40(4): 601-605. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.030
    [7]ZHA Shengming, ZHU Zhijing, CHI Hao. Research of key issues of photonic-assisted compressive sensing technology[J]. LASER TECHNOLOGY, 2016, 40(4): 565-570. DOI: 10.7510/jgjs.issn.1001-3806.2016.04.023
    [8]JING Ning, WANG Zhi-bin, ZHANG Ji-long, CHEN Yuan-yuan. 弹光调制非线性光程差干涉信号的快速反演[J]. LASER TECHNOLOGY, 2012, 36(2): 268-270,288. DOI: 10.3969/j.issn.1001-3806.2012.02.033
    [9]LIN Rui, LIU Qi-neng, ZHANG Cui-ling. A new fast algorithm for gyrator transform[J]. LASER TECHNOLOGY, 2012, 36(1): 50-53. DOI: 10.3969/j.issn.1001-3806.2012.01.014
    [10]Jiang Lingzhen, Liu Haijiang, Li Chenjiang, Zou Lixun, Geng Wanzhen. Study of transverse strain near tip of crack type Ⅰ using holographic interferometry[J]. LASER TECHNOLOGY, 1994, 18(2): 106-109.
  • Cited by

    Periodical cited type(3)

    1. 甘楚立,龙佳乐,丁毅,胡轶,詹晓江,黄克森,张建民. 基于希尔伯特-黄变换的单次离轴全息零频分量抑制. 光学技术. 2022(04): 391-397 .
    2. 宋洁睿,孙蕾,吴玥,袁子怡,董昊,孔勇. 利用液晶波片去除零级像的数字全息成像研究. 智能计算机与应用. 2020(06): 158-161+163 .
    3. 赵亮,刘海,徐世昌,王剑年. HHT和CWT用于光纤振动信号分析的对比研究. 激光技术. 2017(02): 260-264 . 本站查看

    Other cited types(2)

Catalog

    Article views (5) PDF downloads (4) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return