Optical design of pancake structured head-mounted display
-
摘要: 为了满足虚拟现实头戴显示器大视场、大出瞳和高成像质量且结构轻小化等要求,采用逆向光路设计方法,对折叠光路pancake结构展开研究;采用两片透镜进行设计,进行了理论分析和软件仿真,对设计的光学系统进行了公差分析。结果表明,全视场角为96°、出瞳直径为10 mm、出瞳距离为14.94 mm时,在奈奎斯特频率(20.83 lp/mm)处调制传递函数(MTF)大于0.2,最大畸变为-26.5%,最大垂轴色差为13.84 μm;此结构具有更高的MTF值、更小的垂轴色差和弥散斑均方根半径,像差平衡合理。该研究为折叠光路结构的头戴显示器提供了参考。Abstract: In order to meet the requirements of large field of view, large exit pupil, high imaging quality and light and small structure of virtual reality head-mounted display, a reverse optical path design method was adopted to study pancake structure of a folding optical path. Two lenses were designed for theoretical analysis and software simulation, and the tolerance analysis of the designed optical system was carried out. The results show that the full field Angle is 96°, the exit pupil diameter is 10 mm, the exit pupil distance is 14.94 mm, the modulation transfer function (MTF) is greater than 0.2 at Nyquist frequency (20.83 lp/mm), the maximum distortion is -26.5%, and the maximum vertical color difference is 13.84 μm, respectively. This structure has higher MTF value, smaller vertical color difference and root mean square radius of dispersion class, and reasonable aberration balance. This study provides a reference for the folding optical path structure of the head-mounted display.
-
Keywords:
- optical design /
- head mounted display /
- folding optical path /
- virtual reality
-
-
表 1 图像源参数
Table 1 Some parameters of the image source
specification parameters resolution 1600 pixel × 1600 pixel physical dimension 38.4 mm×38.4 mm display brightness 450 cd/m2 contrast 650 ∶1 frame frequency 90 Hz support color 16.7×106 color 表 2 VR HMD透镜数据
Table 2 Lens data of VR HMD
surface radius/mm thickness/mm glass object infinity -500 stop infinity 14.94 2 -57.869 2.20 OKP-4 3 -144.661 0.74 4 infinity 10.17 ARTON_D4531 5 -46.594 2.75 image infinity 表 3 结构参数
Table 3 Structural parameters
diopter/m-1 actual virtual image distance/mm distance from S1 to the image source/mm 0 infinity 3.75 -1 1000 3.24 -2 500 2.75 -3 333.333 2.27 表 4 光学系统的公差
Table 4 Tolerance distribution of optical system
surface tolerances material tolerances element tolerance surface peak-to-valley value/μm radius/mm thickness/mm decenter X/Y/mm tilt X/Y/(°) index Abbe/% decenter X/Y/mm tilt X/Y/(°) S1 0.587 ±0.02 ±0.02 ±0.01 ±0.03 ±0.001 ±1 ±0.02 ±0.03 S2 0.6 S3 0.587 ±0.02 ±0.02 ±0.01 ±0.03 ±0.001 ±1 ±0.02 ±0.03 S4 0.587 表 5 公差分析结果
Table 5 Probability after Monte Carlo operation
Monte Carlo analysis/% average value of MTF >90 0.329 >80 0.331 >50 0.336 >20 0.335 >10 0.336 -
[1] 王文喜, 周芳, 万月亮, 等. 元宇宙技术综述[J]. 工程科学学报, 2022, 44(4): 744-756. WANG W X, ZHOU F, WAN Y L, et al. A survey of metaverse technology[J]. Chinese Journal of Engineering, 2022, 44(4): 744-756(in Chinese).
[2] HAN D D, BERGS Y, MOORHOUSE N. Virtual reality consumer experience escapes: Preparing for the metaverse[J]. Virtual Real, 2022, 26(4): 1443-1458. DOI: 10.1007/s10055-022-00641-7
[3] 王同聚. 虚拟和增强现实(VR/AR)技术在教学中的应用与前景展望[J]. 数字教育, 2017, 3(1): 1-10. WANG T J. Application and prospect forecast of VR/AR technology in education[J]. Digital Education, 2017, 3(1): 1-10(in Chinese).
[4] 刘妍, 胡碧皓, 尹欢欢, 等. 虚拟现实(VR)沉浸式环境如何实现深度取向的学习投入?——复杂任务情境中的学习效果研究[J]. 远程教育杂志, 2021, 39(4): 72-82. LIU Y, HU B H, YIN H H, et al. How can immersive VR environment achieve deeply oriented learning engagement: Study on learning effects in complex task-solving situations[J]. Journal of Distance Education, 2021, 39(4): 72-82(in Chinese).
[5] 李鹏飞, 朱向冰, 陈壮壮. 轻小型头戴显示器的光学设计[J]. 激光技术, 2021, 45(2): 202-207. DOI: 10.7510/jgjs.issn.1001-3806.2021.02.013 LI P F, ZHU X B, CHEN Zh Zh. Optical design of light and small head-mounted display[J]. Laser Technology, 2021, 45(2): 202-207 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.02.013
[6] 陆驰豪, 李海峰, 高涛, 等. 基于拼接的大视场虚拟现实头戴显示装置[J]. 光学学报, 2019, 39(6): 0612002. LU Ch H, LI H F, GAO T, et al. Virtual reality head-mounted display with large field of view based on stitching[J]. Acta Optica Sinica, 2019, 39(6): 0612002 (in Chinese).
[7] SAHINF E. Design of hybrid refractive/diffractive lenses for wearable realitydisplays[J]. Balkan Journal of Electrical and Computer Engineering, 2019, 7(1): 94-98. DOI: 10.17694/bajece.493821
[8] 李鹏飞. 头戴显示器产品中的光学系统设计研究[D]. 芜湖: 安徽师范大学, 2021: 40. LI P F. Research on optical structure of virtual reality head mounted display[D]. Wuhu: Anhui Normal University, 2021: 40(in Ch-inese).
[9] 董智超. 虚拟现实中的大场景真实行走漫游研究[D]. 合肥: 中国科学技术大学, 2020: 2-7. DONG Zh Ch. Research on real walking and wandering in large scenes in virtual reality[D]. Hefei: University of Science and Technology of China, 2020: 2-7(in Chinese).
[10] 李舒驰, 齐占涛. 基于Arduino的虚拟现实头戴显示器姿态跟随系统设计[J]. 集成电路应用, 2021, 38(1): 74-75. LI Sh Ch, QI Zh T. Design of attitude tracking system for virtual reality head-mounted display based on arduino[J]. Integrated Circuit Applications, 2021, 38(1): 74-75(in Chinese).
[11] 庄亚宝, 朱向冰, 刘杰, 等. 大视场虚拟现实头戴显示器光学结构设计[J]. 激光技术, 2022, 46(4): 486-491. DOI: 10.7510/jgjs.issn.1001-3806.2022.04.008 ZHUANG Y B, ZHU X B, LIU J, et al. Optical structure design of virtual reality head-mounted display with large-field[J]. Laser Technology, 2022, 46(4): 486-491 (in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2022.04.008
[12] 陈壮壮, 朱标, 宫明艳, 等. 沉浸式头戴显示器光学系统设计[J]. 激光技术, 2021, 45(4): 470-474. DOI: 10.7510/jgjs.issn.1001-3806.2021.04.010 CHEN Zh Zh, ZHU B, GONG M Y, et al. Design of immersive head-mounted display optical system[J]. Laser Technology, 2021, 45(4): 470-474(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2021.04.010
[13] 王蕴琦. 沉浸式头戴显示光学系统关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018: 20. WANG Y Q. Research on the key technology of immersion head-mounted display opticalsystem[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018: 20(in Chinese).
[14] HOU Q C, CHENG D W, LI Y, et al. Stray light analysis and suppression method of a pancake virtual reality head-mounted display[J]. Optics Express, 2022, 30(25): 44918-44932. DOI: 10.1364/OE.476078
[15] PENG F L, CHEN D, KIM C, et al. Display panel with backreflection suppression comprising first and second birefringent layers and a reflectivity layer: US, 11493800[P]. 2022-11-08.
[16] LA R J. Infinite optical image-forming apparatus: US, 3443858[P]. 1969-05-13.
[17] ROEST W. Head-mounted display with a polarization-dependent mirror: US, 6710928[P]. 2004-03-23.
[18] WONG T L, YUN Z S, AMBUR G, et al. Folded optics with birefringent reflective polarizers[J]. Proceedings of the SPIE, 2017, 10335: 84-90.
[19] NARASIMHAN B A. Ultra-compact pancake optics based on thineyes super-resolution technology for virtual reality headsets[J]. Proceedings of the SPIE, 2018, 10676: 359-366.
[20] CHENG D W, HOU Q C, LI Y, et al. Optical design and pupil swim analysis of a compact, large EPD and immersive VR head mounted display[J]. Optics Express, 2022, 30(5): 6584-6602.
[21] SUN L T. Design of helmet display based on free-formsurface[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020: 27-28(in Chinese).