-
考虑电光材料为磷酸二氢钾(KH2PO4, KDP)晶体,其折射率与晶体的空间坐标x、y和z轴方向有关,x轴和y轴方向的主折射率都为no,z轴方向的主折射率为ne,其线性电光系数γij矩阵可用下式表示[17-18]:
$ \left[\gamma_{i j}\right]=\left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \gamma_{41} & 0 & 0 \\ 0 & \gamma_{52} & 0 \\ 0 & 0 & \gamma_{63} \end{array}\right] $
(1) 式中:i=1, …, 6;j=1, 2, 3。这类晶体的电光张量元素只有γ41、γ52、和γ63不为零,其余元素都为零。
无外电场作用时,晶体折射率在空间各个方向的取值分布可用以z轴为对称轴的椭球方程表示为:
$ \frac{x^2}{n_{\mathrm{o}}{ }^2}+\frac{y^2}{n_{\mathrm{o}}{ }^2}+\frac{z^2}{n_{\mathrm{e}}{ }^2}=1 $
(2) 若电场沿晶体的z轴方向施加,则z轴方向的电场强度大小为Ez,x和y轴方向的电场强度都为零。根据Pockels电光效应[17],这时折射率椭球方程变为:
$ \left(\frac{1}{n_{\mathrm{o}}{ }^2}+\gamma_{63} E_z\right) x^{\prime 2}+\left(\frac{1}{n_{\mathrm{o}}{ }^2}-\gamma_{63} E_z\right) y^{\prime 2}+\frac{1}{n_{\mathrm{e}}{ }^2} z^{\prime 2}=1 $
(3) 式中: x′、y′、z′为感应主轴坐标系。
考虑入射线偏振光沿z轴方向传播,其光矢量Ep的振动方向沿晶体的x轴方向,如图 1所示。
令z′=0,式(3)变为:
$ \left(\frac{1}{n_0{ }^2}+\gamma_{63} E_z\right) x^{\prime 2}+\left(\frac{1}{n_0{ }^2}-\gamma_{63} E_z\right) y^{\prime 2}=1 $
(4) 由式(4)可得电光晶体在感应主轴x′和y′方向的折射率分别为:
$ n_{x^{\prime}}=n_{\mathrm{o}}-\frac{1}{2} n_{\mathrm{o}}{ }^3 \gamma_{63} E_z $
(5) $ n_{y^{\prime}}=n_{\mathrm{o}}+\frac{1}{2} n_{\mathrm{o}}{ }^3 \gamma_{63} E_z $
(6) 入射线偏振光进入晶体后, 其光矢量Ep沿x′和y′方向分解为两个垂直的偏振分量Ep, x′和Ep, y′,其中Ep, x′=A1cos(ωt),Ep, y′=A2cos(ωt),A1和A2分别为光矢量在x′和y′方向的振幅,ω为光矢量振动频率,t为传播时间。经过晶体长度为L的光程分别为nx′L和ny′L,则相应的相位延迟分别为:
$ \varphi_{x^{\prime}}=\frac{2 {\rm{ \mathsf{ π}}}}{\lambda} n_{x^{\prime}} L=\frac{2 {\rm{ \mathsf{ π}}} L}{\lambda}\left(n_o-\frac{1}{2} n_o{ }^3 \gamma_{63} E_z\right) $
(7) $ \varphi_{y^{\prime}}=\frac{2 {\rm{ \mathsf{ π}}}}{\lambda} n_{y^{\prime}} L=\frac{2 {\rm{ \mathsf{ π}}} L}{\lambda}\left(n_o+\frac{1}{2} n_{\mathrm{o}}{ }^3 \gamma_{63} E_z\right) $
(8) 式中:λ为入射光的波长。Ep, x′和Ep, y′通过电光晶体后会产生一个相位差:
$ \Delta \varphi=\varphi_{y^{\prime}}-\varphi_{x^{\prime}}=\frac{2 {\rm{ \mathsf{ π}}}}{\lambda} n_{\mathrm{o}}{ }^3 \gamma_{63} E_z L=\frac{2 {\rm{ \mathsf{ π}}}}{\lambda} n_{\mathrm{o}}{ }^3 \gamma_{63} U $
(9) 式中:U=EzL是沿z轴方向施加的电压。式(9)说明由于两个偏振分量Ep, x′和Ep, y′之间存在相位延迟,将会改变透射光束的偏振态。由偏振光理论可知,在一般情况下,这时通过晶体后的两偏振分量合成为一束椭圆偏振光,合成振动公式表示为[17-18]:
$ \frac{E_{\mathrm{p}, x^{\prime}}{ }^2}{A_1{ }^2}+\frac{E_{\mathrm{p}, y^{\prime}}{ }^2}{A_2{ }^2}-\frac{2 E_{\mathrm{p}, x^{\prime}} E_{\mathrm{p}, y^{\prime}}}{A_1 A_2} \cos (\Delta \varphi)=\sin ^2(\Delta \varphi) $
(10) 若施加的电压U方向沿光传播方向,且U值在(0,Vπ)范围,Vπ是电光晶体的半波电压,根据式(9)和式(10)可得相应相位差Δφ的值在(0,π),上述通过电光晶体合成的椭圆偏振光表现为右旋;同理,若U方向与光传播方向相反,相应的Δφ为(-π,0),合成的椭圆偏振光则表现为左旋[18-19]。
由上述分析可知,通过电光晶体的光偏振态取决于施加的电压方向。下一步需要确定椭圆偏振光的光矢量的旋转轨迹,可把λ/4波片置于椭圆偏振光传播前面,如图 2所示。调节λ/4波片的快轴与椭圆偏振光的长轴方向一致,慢轴则和短轴方向一致,使椭圆偏振光的长短轴产生一个π/2的附加相位。右旋椭圆偏振光的长短轴方向的相位差Δφ1=π/2,透过λ/4波片后的相位差变成Δφ=Δφ1+π/2=π,根据式(10)可知,右旋椭圆偏振光变换为线偏振光,其偏振方向在空间坐标的二、四象限;同理,对于左旋椭圆偏振光,其长短轴方向的相位差Δφ2=-π/2,透过λ/4波片后的相位差变成Δφ=Δφ2+π/2=0,变换为线偏振光[18, 20],其偏振方向在一、三象限。因此,可以通过测量电光晶体的透射椭圆偏振光的光矢量旋转方向,然后根据偏振光合成理论和电光效应判断出外加电压的方向,实现利用电光效应测量电压的方向。
基于Pockels电光效应的电压方向测量
Measurement of voltage direction based on Pockels electro-optic effect
-
摘要: 为了实现在光学电压互感器中电压方向的测量, 利用Pockels效应和偏振光理论进行理论分析和实验验证, 提出了一种基于Pockels效应的电压方向测量方法, 得到不同方向的电压与出射光偏振态、光传播方向之间的关系。结果表明, 当施加的电压值为100 V时, 迎着光观测, 透射光的长轴和短轴分别位于空间角度20°和110°, 再通过λ/4波片后的光偏振方向位于坐标的二、四象限, 可判断透射光是右旋椭圆偏振光, 电压方向沿光传播方向; 长轴和短轴分别位于角度130°和40°的透射光通过λ/4波片后的光偏振方向位于一、三象限, 则透射光是左旋椭圆偏振光, 电压方向则沿光传播的相反方向。实验结果与理论分析相符, 可指导设计既能测量电压大小又能判断其方向的光学电压互感器。Abstract: To achieve measurement of voltage direction for optical voltage transformers, theoretical analysis and experimental verification were conducted by the Pockels effect and theory of polarized light, and a measuring method of voltage direction was presented based on the Pockels effect. The relation among different direction voltage, the state of light polarization and light propagating direction were obtained. The results show that, when the value of applied voltage is 100 V, observing toward light, the long and short axis of the transmitted light are located at the spatial angles of 20° and 110°, respectively, and the polarization direction of light passing through a λ/4 wave-plate is located in the second and fourth quadrants of the coordinates, which indicates that the transmitted light is right-lateral elliptically polarized light, the direction of voltage is along the light propagating direction. In addition, the spatial angles are 130° and 40°, and the polarization direction with a λ/4 wave-plate is located in the first and third quadrants, which indicates that the transmitted light is left-lateral elliptically polarized light, the direction of voltage is along the opposite direction of light propagation. The experimental results agree well with the theory, which can guide the design of optical voltage transformers that can measure the magnitude and direction of voltages.
-
-