高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DFB-EAM的40Gbit/s可集成光网络单元全双工测试

郑枫 陈芯蕊 楚广勇

引用本文:
Citation:

基于DFB-EAM的40Gbit/s可集成光网络单元全双工测试

    作者简介: 郑枫(1997-), 男, 硕士研究生, 主要研究方向为光纤通信.
    通讯作者: 楚广勇, cgy@jiangnan.edu.cn
  • 基金项目:

    中央高校基础研究专项经费资助项目 JUSRP11835

    江苏省自然科学基金资助项目 BK20170199

    江苏省研究生科研与实践创新计划资助项目 SJCX20_0762

  • 中图分类号: TN929.11

Full duplex test of 40Gbit/s integrable optical network unit based on DFB-EAM

    Corresponding author: CHU Guangyong, cgy@jiangnan.edu.cn
  • CLC number: TN929.11

  • 摘要: 为了兼顾用户端光网络单元的特点和传输速率, 在接收端采用可集成化的相干检测方案替代传统的直接检测方案, 分析了电吸收调制器的偏压特性, 搭建了速率为40Gbit/s的5km双向接入网通信系统, 对以分布式反馈激光器和电吸收调制器为上行发射机的可集成光网络单元进行了传输测试。结果表明, 在直接检测方案前向纠错(FEC)下, 双向传输下行信号接收灵敏度和上行信号接收灵敏度分别达到了-18.31dBm和-17.94dBm; 在相干检测方案FEC下, 双向传输下行信号接收灵敏度和上行信号接收灵敏度分别达到了-32.51dBm和-29.76dBm。相干检测方案的上行和下行接收灵敏度相较于直接检测分别有14.20dB和11.82dB的提升。该研究为未来用户端光网络单元提供了一种高速率可大规模部署的集成化方案。
  • Figure 1.  Structure diagram of EAM generating optical pulse

    Figure 2.  Relation curve between EAM reverse bias voltage and output power

    Figure 3.  Structure diagram of 40Gbit/s direct detection bidirectional transmission system

    Figure 4.  Bit error rate of unidirectional transmission in direct detection system

    a—downstream b—upstream

    Figure 5.  Bit error rate of bidirectional transmission in direct detection system

    a—downstream b—upstream

    Figure 6.  Structure diagram of 40Gbit/s coherent detection bidirectional transmission system

    Figure 7.  Bit error rate of unidirectional transmission in coherent detection system

    a—downstream b—upstream

    Figure 8.  Bit error rate of bidirectional transmission in coherent detection system

    a—downstream b—upstream

  • [1]

    LU Y P, WANG J P. Digital gap or information welfare: The effect of internet use on individual subjective well-being in China[J]. Economic Perspectives, 2020, 708(2): 61-75(in Chinese).
    [2]

    VEEN D V, HOUTSMA V. Strategies for economical next-generation 50G and 100G passive optical networks[J]. Journal of Optical Communications and Networking, 2020, 12(1): A95. doi: 10.1364/JOCN.12.000A95
    [3]

    WANG X, NIU P, ZHENG Z, et al. Miniature acoustic resonator induced in-situ electrode foul removal enabling the continuous electrochemical measurements[C]//2021 IEEE 34th International Confe-rence on Micro Electro Mechanical Systems. New York, USA: IEEE, 2021: 1019-1022.
    [4]

    LIU X, EFFENBERGER F. Emerging optical access network techno-logies for 5G wireless[J]. Journal of Optical Communications & Networking, 2016, B8(12): 70-79.
    [5]

    XU G Y, HU L F, DENG C R, et al. Construction of dynamic model of semiconductor optical amplifier based on iterative algorithm[J]. Laser Technology, 2020, 44(2): 255-260(in Chinese).
    [6]

    CHEN X R, CHU G Y. Research on optimization of optical network unit of full-duplex direct modulation laser[J]. Laser & Infrared, 2021, 51(7): 865-870(in Chinese).
    [7]

    LIU L X, XU L, WANG Q, et al. Measurement of the chirp parameter in DFB semiconductor laser diode[J]. Journal of Henan Normal University(Natural Science Edition), 2018, 46(6): 34-38(in Chinese).
    [8]

    FENG S Ch, FAN Y Y, CHEN X Y, et al. Design of multicarrier optical source using cascaded electro-absorption modulator and phase modulator[J]. Chinese Journal of Lasers, 2016, 43(11): 1106001(in Chinese). doi: 10.3788/CJL201643.1106001
    [9]

    BAIER M, GROTE N, MOEHRLE M, et al. Integrated transmitter devices on InP exploiting electro-absorption modulation[J]. PHOTONIX, 2020, 1(1): 1-11. doi: 10.1186/s43074-020-00006-w
    [10]

    KOBAYASHI W, FUJISAWA T, ITO T, et al. Advantages of EADFB laser for 25Gbaud/s 4-PAM (50Gbit/s) modulation and 10km single-mode fibre transmission[J]. Electronics Letters, 2014, 50(9): 683-685. doi: 10.1049/el.2014.0529
    [11]

    LERIN A, CHU G Y, POLO V, et al. Chip integrated DFB-EAM for directly phase modulation performance improvement in UDWDM-PON[C]//2015 European Conference on Optical Communication (ECOC). New York, USA: IEEE, 2015: 1-3.
    [12]

    CHEN X R, CHU G Y. 10Gbit/s bidirectional transmission with an optimized SOA and a SOA-EAM based ONU[J]. Applied Sciences, 2020, 10(24): 8960. doi: 10.3390/app10248960
    [13]

    LIU Zh, LI X L, NIU Ch Q, et al. 56 Gbps high-speed Ge electro-absorption modulator[J]. Photonics Research, 2020, 8(10): 131-135.
    [14]

    EL-HAGEEN H M, KUPPUSAMY P G, ALATWI A M, et al. Di-fferent modulation schemes for direct and external modulators based on various laser sources[J]. Journal of Optical Communications, 2020, 29(15): 1-10.
    [15]

    BANJHAL S, MEHRA R. Design and simulation of reflective modulators based on semiconductor optical amplifier and electro-absorption modulator[C]//2015 International Conference on Computer, Communication and Control (IC4). New York, USA: IEEE, 2015: 1-6.
    [16]

    SHINDO T, FUJIWARA N, KANAZAWA S, et al. High power and high speed soa assisted extended reach EADFB laser (AXEL) for 53Gbaud PAM4 fiber-amplifier-less 60km optical link[J]. Journal of Lightwave Technology, 2020, 38(11): 2984-2991. doi: 10.1109/JLT.2020.2974511
    [17]

    REN M Zh, XU T W, ZHANG F X, et al. Statistical properties of rayleigh backscattered light in single-mode fibers caused by a highly coherent laser[J]. Chinese Journal of Lasers, 2013, 40(1): 0105001(in Chinese). doi: 10.3788/CJL201340.0105001
    [18]

    TABARES J A, GHASEMI S, POLO V, et al. Simplified carrier recovery for intradyne optical PSK receivers in udWDM-PON[J]. Journal of Lightwave Technology, 2018, 36(14): 2941-2947. doi: 10.1109/JLT.2018.2831918
    [19]

    MASATO A, YOSHIDA C, KOSUKE T, et al. Single-channel 15.3 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150km with a spectral efficiency of 8.3bit/s/Hz[J]. Optics Express, 2019, 27(20): 28952-28967. doi: 10.1364/OE.27.028952
  • [1] 赵英俊王江安任席闯王乐东 . 舰船激光通信中大气湍流对系统误比特率的影响. 激光技术, 2010, 34(2): 261-264. doi: 10.3969/j.issn.1001-3806.2010.02.032
    [2] 张铁英王红星何伍福马杰 . 光通信中基于脉冲调制的联合编码调制研究. 激光技术, 2010, 34(6): 843-846. doi: 10.3969/j.issn.1001-3806.2010.06.033
    [3] 柯熙政陈丹屈菲 . RoFSO系统中4FSK仿真及其误比特率性能分析. 激光技术, 2010, 34(4): 466-469. doi: 10.3969/j.issn.1001-3806.2010.04.010
    [4] 和亮 . 基于级联马赫-曾德尔调制器的太赫兹通信系统. 激光技术, 2016, 40(6): 787-790. doi: 10.7510/jgjs.issn.1001-3806.2016.06.003
    [5] 朱永琴田二林 . 基于光环形器的光传送网通信偏振模色散抑制. 激光技术, 2018, 42(5): 699-703. doi: 10.7510/jgjs.issn.1001-3806.2018.05.021
    [6] 白菊蓉郭宇成王彦本 . 一种改进的OFDM水下可见光无线通信系统. 激光技术, 2021, 45(5): 647-653. doi: 10.7510/jgjs.issn.1001-3806.2021.05.019
    [7] 陈丹柯熙政 . 基于LDPC码的无线光通信副载波误码性能分析. 激光技术, 2011, 35(3): 388-390,402. doi: 10.3969/j.issn.1001-3806.2011.03.026
    [8] 邓荣饶炯辉张晓晖高巍魏巍 . 水下光通信防恶性码卷积码设计. 激光技术, 2011, 35(2): 222-225. doi: 10.3969/j.issn.1001-3806.2011.02.022
    [9] 秦岭张玉鹊李宝山杜永兴 . 基于MIMO技术的LED可见光通信系统. 激光技术, 2019, 43(4): 539-545. doi: 10.7510/jgjs.issn.1001-3806.2019.04.018
    [10] 李鹏霞柯熙政 . 相干光通信系统中QPSK调制解调实验研究. 激光技术, 2019, 43(4): 563-568. doi: 10.7510/jgjs.issn.1001-3806.2019.04.022
    [11] 赵太飞王秀峰刘园 . 大气湍流中直升机助降紫外光引导调制研究. 激光技术, 2017, 41(3): 411-415. doi: 10.7510/jgjs.issn.1001-3806.2017.03.021
    [12] 易淼陈名松李天松孙丽华 . 时钟抖动对水下激光MPPM通信的误码影响分析. 激光技术, 2009, 33(6): 597-599,603. doi: 10.3969/j.issn.1001-3806.2009.06.011
    [13] 陈海燕刘威李莉 . 相对相位噪声对相干光通信系统性能影响. 激光技术, 2016, 40(1): 94-98. doi: 10.7510/jgjs.issn.1001-3806.2016.01.021
    [14] 王芳延凤平秦齐常欢任文华 . 模分复用系统中盲均衡算法的均衡性能研究. 激光技术, 2024, 48(1): 48-53. doi: 10.7510/jgjs.issn.1001-3806.2024.01.008
    [15] 贺锋涛王清杰张建磊杨祎王妮李碧丽 . 孔径接收下各向异性海洋湍流UWOC系统误码分析. 激光技术, 2021, 45(6): 762-767. doi: 10.7510/jgjs.issn.1001-3806.2021.06.015
    [16] 安岩许燚赟董科研李欣航 . 便携式激光通信系统视场角检测装置的设计. 激光技术, 2019, 43(1): 15-18. doi: 10.7510/jgjs.issn.1001-3806.2019.01.004
    [17] 贺锋涛王乐莹王晓波杨祎李碧丽 . 基于改进的AdaBoost无线光通信信号检测算法. 激光技术, 2023, 47(5): 659-665. doi: 10.7510/jgjs.issn.1001-3806.2023.05.013
    [18] 刘世涛曹阳彭小峰张勋 . 机载激光通信的模糊神经网络PID视轴稳定控制. 激光技术, 2017, 41(4): 606-610. doi: 10.7510/jgjs.issn.1001-3806.2017.04.030
    [19] 徐山河肖沙里王珊彭帝永 . 基于声光调制的逆向调制光通信系统研究. 激光技术, 2015, 39(5): 598-602. doi: 10.7510/jgjs.issn.1001-3806.2015.05.004
    [20] 魏巍华良洪张晓晖饶炯辉王文博 . 多幅度数字脉冲间隔调制的水下无线光通信研究. 激光技术, 2011, 35(3): 330-333. doi: 10.3969/j.issn.1001-3806.2011.03.012
  • 加载中
图(8)
计量
  • 文章访问数:  3615
  • HTML全文浏览量:  2457
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 录用日期:  2021-08-06
  • 刊出日期:  2022-09-25

基于DFB-EAM的40Gbit/s可集成光网络单元全双工测试

    通讯作者: 楚广勇, cgy@jiangnan.edu.cn
    作者简介: 郑枫(1997-), 男, 硕士研究生, 主要研究方向为光纤通信
  • 1. 江南大学 理学院, 无锡 214122
  • 2. 江苏省轻工光电工程技术研究中心, 无锡 214122
基金项目:  中央高校基础研究专项经费资助项目 JUSRP11835江苏省自然科学基金资助项目 BK20170199江苏省研究生科研与实践创新计划资助项目 SJCX20_0762

摘要: 为了兼顾用户端光网络单元的特点和传输速率, 在接收端采用可集成化的相干检测方案替代传统的直接检测方案, 分析了电吸收调制器的偏压特性, 搭建了速率为40Gbit/s的5km双向接入网通信系统, 对以分布式反馈激光器和电吸收调制器为上行发射机的可集成光网络单元进行了传输测试。结果表明, 在直接检测方案前向纠错(FEC)下, 双向传输下行信号接收灵敏度和上行信号接收灵敏度分别达到了-18.31dBm和-17.94dBm; 在相干检测方案FEC下, 双向传输下行信号接收灵敏度和上行信号接收灵敏度分别达到了-32.51dBm和-29.76dBm。相干检测方案的上行和下行接收灵敏度相较于直接检测分别有14.20dB和11.82dB的提升。该研究为未来用户端光网络单元提供了一种高速率可大规模部署的集成化方案。

English Abstract

    • 随着网络服务的发展趋向多元化,互联网的普及率也在逐年增加[1]。面对市场需求的迅速增长,通信骨干网的速率已得到很大的提升,达到Tbit/s级,基本能满足新兴业务发展的需求,但作为电信网络的末端“最后1km”的接入网系统,速率没有明显的提升,这直接制约着用户最终的接入速率和网络质量,其解决方案成为了日益关注的焦点[2-3]。虽然目前接入网速率可满足5G的1Gbit/s需求,但随着对8K超清视频、医疗健康、自动驾驶等技术需求的提高,接入网可能无法应对未来几年的网络需求[4]

      由于接入网系统对成本的敏感性要求,构建一个简化、低成本的光网络单元成为了决定其大规模部署的必要因素。CHEN团队搭建了一个集成了直接调制激光器和半导体光放大器(semiconductor optical amplifier, SOA)[5]的20km双向传输通信系统,测试结果表明, 该系统具有良好的性能[6],但直接调制激光器的调制效果在高传输速率下受频率啁啾限制[7]。电吸收调制器(electro-absorption modulator, EAM)具有可集成、体积小、驱动电压低、低频率啁啾等优良特性[8],使它与激光器的集成光源模块成为接入网系统的理想光源之一[9-11]。为了兼顾接入网的特点和传输速率,本文作者在前期研究基础上[6, 12], 将传输速率提升到40Gbit/s, 并以EAM作为上行发射机的外调制器,搭建了以可集成分布式反馈(distributed feedback, DFB)-EAM器件为上行光发送单元的双向通信系统,分别测试了该系统在直接检测方案和相干检测方案下的传输性能。

    • EAM是一种PIN半导体节型器件,它基于Franz-Keldysh效应和量子约束Stark效应[13]的共同作用使材料吸收光谱发生变化,通过改变偏压大小影响材料的吸收波长,从而实现光调制。EAM对光的吸收会随着其反偏电压的增加而呈非线性增大,从而使入射光的透过率与反偏电压呈现出特定关系,可以利用这种特性对光波进行调制输出光脉冲。研究了电吸收调制器在输入光波长为1569.59nm、输入光功率为-5dBm时,EAM反向电压和输出光功率之间的关系,确定了EAM调制信号峰峰值为2V时的反向偏置电压。

      EAM产生光脉冲的原理如图 1所示。EAM对入射光的吸收随着反向电压的增加而非线性增加,给EAM施加适当的反向直流电压和驱动电压,使得EAM的透过率随着驱动电压的变化而波动,DFB激光器发出的连续光波(continuous wave, CW)经EAM调制,在反向直流电压与驱动电压作用下可产生光脉冲输出,脉冲输出的重复率等于驱动电压重复率[14]

      Figure 1.  Structure diagram of EAM generating optical pulse

      图 2是EAM在输入激光功率为-5dBm、波长为1569.59nm的情况下,EAM的输出光功率与其反偏电压之间的变化曲线。横轴表示反向电压值,纵轴表示输出光的功率值。在电压处于0V~2V时,随着偏置电压的增加,输出光功率减小;当电压大于2V,输出光功率很小并且不再变化。当调制信号的峰峰值为2V,直流偏置电压取1V,EAM工作在图 2中所示的透过区,能获得良好的调制效果[15]

      Figure 2.  Relation curve between EAM reverse bias voltage and output power

    • 图 3显示了在40Gbit/s数据速率下,使用伪随机二进制序列(pseudo random binary sequence, PRBS)测量以DFB和EAM为上行发射机的5km双向传输网络性能的实验框架。下行传输采用连续激光器和标准幅度调制器(amplitude modulator, AM)为发射机,PRBS经过标准不归零(non return to zero, NRZ)脉冲发生器转换为脉冲信号,再通过AM加载至1552.12nm波长的连续光波上,成为入纤所需的带有信息的光信号,经过5km的单模光纤(single mode fiber, SMF)传输,在光网络单元(optical network unit, ONU)通过PIN光电二极管将其转换为电信号,再通过均衡滤波器转换成低噪声电信号,最终从误比特率(bit error rate, BER)分析仪检测获得输出信号的误比特率。上行传输采用DFB和EAM作为发射机,光源波长为1569.59nm,其它结构与下行一致。图 3中,ODN(optical distribution network)为光分配网络;C1和C2为循环器; VOA(variable optical attenuator)为可变光衰减器; TIA(trans impedance amplitier)为跨阻抗放大器; OLT(optical line terminal)为光线路终端。

      Figure 3.  Structure diagram of 40Gbit/s direct detection bidirectional transmission system

    • 图 4显示了40Gbit/s直接检测单向传输系统在单模光纤长度分别为0km和5km两种情况下传输误比特率和接收光功率的关系。在误比特率为2.4×10-4的标准前向纠错(forward error correction, FEC)下[16],单向下行链路在背对背(back to back, BTB)的接收灵敏度为-20.55dBm,在光纤长度为5km时接收灵敏度为-19.13dBm。单向上行链路在BTB传输的接收灵敏度为-20.51dBm,在光纤长度为5km距离传输的接收灵敏度为-18.18dBm。

      Figure 4.  Bit error rate of unidirectional transmission in direct detection system

      图 5为双向传输系统在单模光纤为0km和5km两种情况下的系统通信误比特率测试结果。在传输速率为40Gbit/s、前向误比特率为2.4×10-4时,BTB传输的下行链路信号接收灵敏度为-20.41dBm,上行链路信号的接收灵敏度为-20.45dBm;在5km距离的传输中,下行链路信号的接收灵敏度为-18.31dBm,上行链路信号的接收灵敏度为-17.94dBm。

      Figure 5.  Bit error rate of bidirectional transmission in direct detection system

      一般来说,与5km的单向传输系统相比,单纤双向传输系统中的瑞利后向散射会限制接收端的接收灵敏度[17],但结果表明,在5km的双向传输中,上游功率损耗为0.24dB, 而双向下游的功率损耗为0.82dB,说明瑞利后向散射对系统的影响较小。与BTB双向传输的情况下相比,5km的双向上游功率损耗为2.51dB,双向下游功率损耗为2.10dB,这说明5km的光纤色散对整个系统的影响较大。

    • 图 6是在40Gbit/s传输速率下,以内差检测[18]方案为上下行接收机的双向传输系统的结构示意图。上下行的发射机的结构与直接检测系统的结构一致,接收端都采用功率为3dB的DFB激光器作为本征光源。在接收端,经过光纤传输的信号光与本征光耦合干涉后,通过PIN光电二极管将其转换为电信号,最后经均衡滤波器和误比特率分析仪得到传输误比特率。

      Figure 6.  Structure diagram of 40Gbit/s coherent detection bidirectional transmission system

    • 图 7显示了40Gbit/s相干检测单向传输系统在单模光纤长度分别为0km和5km两种情况下传输误比特率和接收光功率的关系。在误比特率为2.4×10-4的FEC级别下,单向下行链路在BTB和5km距离传输的接收灵敏度分别为-33.42dBm和-32.28dBm,单向上行链路在BTB和5km传输的接收灵敏度分别达到了-33.92dBm和-31.88dBm。

      Figure 7.  Bit error rate of unidirectional transmission in coherent detection system

      图 8显示了40Gbit/s相干检测双向传输系统在单模光纤长度分别为0km和5km两种情况下传输误比特率和接收光功率的关系。在误比特率为2.4×10-4的FEC级别下,双向下行链路在BTB和5km距离传输接收灵敏度分别为-34.35dBm和-32.51dBm,双向上行链路在BTB和5km距离传输接收灵敏度分别达到了-34.30dBm和-29.76dBm。

      Figure 8.  Bit error rate of bidirectional transmission in coherent detection system

      直接检测和相干检测的系统误比特率都随着接收功率的减小呈增加趋势;但在相干检测系统中,由于发射端光源和本征光源相位差具有随机性,误比特率曲线邻点间出现了接收功率减小、误比特率也减小的现象,可在接收端设计锁相环来减少该现象[19]。相比直接检测系统,相干检测增加了系统的复杂度和成本,但其能够减小光纤色散带来的影响显著提升系统的接收灵敏度。在此系统中,相干检测将5km双向下行链路的接收灵敏度提升了14.20dB,5km双向上行链路的接收灵敏度提升了11.82dB,拥有良好的应用前景。

    • 分析了EAM的反向偏压特性,在调制电压峰峰值为2V、反向偏压为1V时,EAM能获得良好的调制效果。设计并运行了以DFB和EAM为上行发射机的40Gbit/s、5km双向传输网络,结果表明,在前向误比特率为2.4×10-4时,以直接检测方案为接收端的双向网络下行和上行信号的接收灵敏度分别为-18.31dBm和-17.94dBm,分析得出光纤色散对此系统影响较大,而光纤的后向瑞利散射对此系统影响较小。相干检测方案的双向网络下行链路信号和上行链路信号的接收灵敏度分别达到了-32.51dBm和-29.76dBm,并且相较于直接检测方案接收灵敏度分别有14.20dB和11.82dB的提升。

      本系统的光网络单元所采用的器件皆为可集成化的半导体器件,为未来用户端光网络单元提供一种高速率可大规模部署的集成化方案。

参考文献 (19)

目录

    /

    返回文章
    返回