-
石英玻璃不仅具有良好的物理特性,比如硬度高、穿透性好,还具有优良的化学性能,比如较高的熔点、耐热冲击力强,在温度较高的环境下工作性能稳定,对从紫外线到近红外波段的光具有优良的透射率,所以很多光学系统的窗口材料和滤光片的基底材料都是石英玻璃[11]。
假设入射激光为高斯光束,并以5°入射角入射,相应的光强分布为:
$ I(x, y)=I_{0} \exp \left[\frac{-2\left\{x^{2}+[y / \cos ({\rm{ \mathsf{ π} }} / 36)]^{2}\right\}}{w^{2}}\right] $
(1) 式中,I0为激光功率密度,w为束腰半径, x, y分别为相应的坐标。
当熔融石英基片被高能激光辐照时,基片吸收激光能量受热升温,此时研究基片的温度场,可采用傅里叶热传导理论,研究基片与激光相互作用时产生的温度场分,1维热传导方程[12]为:
$ \rho c \frac{\partial T}{\partial t}=\kappa \frac{\partial^{2} T}{\partial z^{2}}+Q(z, t) $
(2) 式中,ρ为密度;c为比热容;κ为热传导系数;T为温度;z为与材料表面垂直的方向(轴向);t为时间;Q(z, t)为热源函数。
在COMSOL有限元分析软件中,可根据熔融石英的吸收系数来建立相应的热源,以等效热源的方式模拟材料对激光的吸收。热源函数为:
$ Q(z, t)=(1-R) \alpha I \operatorname{exp}(\alpha z) $
(3) 式中,R为反射系数,α为材料对激光的吸收系数,I为激光强度。基片材料具体参量如表 1[13]所示。
Table 1. Parameters used in simulation
wavelength λ=1.315nm waist radius w=140mm length and width of substrate L=300mm ambient temperature T0=298.15K density ρ=2.21g·cm-3 heat capacity C=746J·kg-1 ·K- 1 thermal coefficient of expansion β=0.51×10-6 ℃-1 laser power density P=3.2481×107W·m-2 thickness of substrate H=40mm melting point Tmelt =1700℃ reflectivity R=0.035 thermal conductivity κ=1.38W·m -1·K-1 absorption coefficient α=0.19×10-3cm- 1 Young’s modulus E=7.26×1010Pa -
为了研究基片发生热形变后对于光束质量的影响,基于VirtualLab构建了符合上述条件的光路系统,用探测器记录更换不同夹持条件下的基片时最终传输到探测器里光束的光束质量。
搭建的光路图如图 5所示。
为了研究高斯光束经不同的面形的基片反射光的光束质量,将上节中2种由不同夹持方式引起的不同的热形变导入到VirtualLab里,仿真得到的面形如图 6所示。
由图 6可以看出,由VirtualLab仿真得到的面形形变分布与图 3是一致的,且PV值分别为418.67nm, 332.82nm, 98.38nm,与图 3中显示的418.90nm, 332.90nm, 98.38nm几乎一致。
运行光路传输结果,得到探测器检测到的光束质量结果,为了更直观地比较不同面形引起光束质量变化的情况,首先将光直接打到一个无面形形变的基片上,然后再更换不同的面形,分别得到光束质量如表 2所示。
Table 2. Beam quality in different base sheet shapes
sheet shape of the substrate beam quality factor Mx2 My2 plane 1.0036 1.0037 sheet shape of splint fixation 1.4571 1.0408 sheet shape of tricyclic fixation 1.2624 1.0061 sheet shape of boundary fixation 1.0064 1.0065 比较3种不同的夹持方式,发现采用四周固定的方式,热形变量是最小的,且对光束质量的影响也是最小的。考虑到基片较大,为了使基片在使用过程中受到较小而均匀的压力的同时保证基片工作面不受损伤[15],最好采用四周夹持的方式固定基片。为了进一步研究采用四周夹持方式时,基片热形变对光束质量的影响,将激光辐照时间延长至100s, 并绘制出光束质量随时间的变化图,如图 7a所示。
Figure 7. a—variation of beam quality with time b—the first 30 order Zernike coefficients of substrate thermal deformation surface
由图 7可以看出,随着激光辐照时间增加,光束质量因子M2(无量纲)也在逐渐变大。因为基片受激光辐照时间越长,表面形变量越大,导致光束质量下降,但光束质量下降并不严重。为了更好地分析光束质量下降的原因,进一步对采用四周夹持的基片热形变面形进行Zernike多项式分解,得到前30阶Zernike系数, 其结果如图 7b所示。
从图 7b可以看出,对于基片的热形变面形,除了含有较大的平移项(第0项)和离焦项(第3项)外,还包含了少量的球差项(第10项)和其它高阶项。在Zernike多项式中,平移项代表波前的平均光程差,离焦项表示波前的高斯或近轴特性。而离焦量对M2影响很小,只有少部分的球差会对光束质量有较大的影响,所以光束质量下降并不严重。
熔融石英基片热形变及其对光束质量的影响分析
Thermal deformation of fused silica substrates and its influence on beam quality
-
摘要: 熔融石英基片受高能激光辐照后,受热产生的热形变会恶化系统出射的光束质量。为了研究光束质量的恶化情况,采用COMSOL有限元分析软件,建立了在连续高能激光辐照下熔融石英基片热形变分析模型,并针对基片在不同的夹持方式下的热形变进行了比较分析,得到了基片受热后的温度分布和形变分布情况,并利用VirtualLab软件定量分析了熔融石英基片热形变对光束质量的影响。结果表明,采用四周固定的方式,热形变量是最小的;基片的热形变会对光束质量造成影响,激光辐照时间越长,热形变量越大,对光束质量影响越大;当基片被激光辐照20s后,采用夹板固定的基片最大形变量达到415.90nm,光束质量因子Mx2由1.0036恶化至1.4571;采用四周固定的基片最大形变量达到98.38nm,光束质量因子Mx2由1.0036恶化至1.0064。这一结果对后续激光合束系统搭建以及光束质量优化有重要的指导意义。Abstract: When fused quartz substrates are irradiated by high energy laser, the thermal deformation caused by heating would deteriorate the beam quality emitted by the system. In order to study the deterioration of beam quality, COMSOL finite element analysis software was used. The thermal deformation analysis model of fused quartz substrates irradiated by continuous high energy laser was established. The thermal deformations of the substrates under different clamping modes were compared and analyzed. The temperature distribution and deformation distribution of the substrate after heating were obtained. The effect of thermal deformation of fused quartz substrates on beam quality was quantitatively analyzed by VirtualLab software. The results show that, the thermal deformation is the smallest in boundary fixation. The thermal deformation of the substrate will affect the beam quality. The longer the laser irradiation time, the greater the thermal deformation, the greater the impact on the beam quality. When the substrate is irradiated by laser for 20s, the maximum deformation of the substrate of splint fixation is 415.90nm. The beam quality factor is deteriorated from 1.0036 to 1.4571. The maximum deformation of the substrate of boundary fixation is 98.38nm. The beam quality factor is deteriorated from 1.0036 to 1.0064. This result has important guiding significance for the subsequent laser beam combining system construction and beam quality optimization.
-
Key words:
- laser optics /
- thermal deformation /
- finite element method /
- beam quality
-
Table 1. Parameters used in simulation
wavelength λ=1.315nm waist radius w=140mm length and width of substrate L=300mm ambient temperature T0=298.15K density ρ=2.21g·cm-3 heat capacity C=746J·kg-1 ·K- 1 thermal coefficient of expansion β=0.51×10-6 ℃-1 laser power density P=3.2481×107W·m-2 thickness of substrate H=40mm melting point Tmelt =1700℃ reflectivity R=0.035 thermal conductivity κ=1.38W·m -1·K-1 absorption coefficient α=0.19×10-3cm- 1 Young’s modulus E=7.26×1010Pa Table 2. Beam quality in different base sheet shapes
sheet shape of the substrate beam quality factor Mx2 My2 plane 1.0036 1.0037 sheet shape of splint fixation 1.4571 1.0408 sheet shape of tricyclic fixation 1.2624 1.0061 sheet shape of boundary fixation 1.0064 1.0065 -
[1] RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers:Current status and future perspectives invited[J]. Journal of the Optical Society of America, 2010, B27(11):B63-B92. [2] ZHANG X X, GE T W, TAN Q R, et al. Research of Yb-doped all fiber lasers[J]. Acta Photonica Sinica, 2015, 44(10):1014002(in Chinese). [3] ZHANG H, YANG Ch P, LI W, et al. Characteristics of high-power all-fiber laser[J]. High Power Laser and Particle Beams, 2012, 24(6):1287-1289(in Chinese). [4] FAN H Y, ZHANG H, ZHAO Q, et al. Parameter measurement of thermal effect of high-energy laser material based H-S wavefront sensor[J]. Laser Technology, 2018, 42(2):201-205(in Chinese). [5] YI H Y, QI Y, HUANG J J. Development of ship-based laser weapons system[J]. Laser Technology, 2015, 39(6):834-839(in Chinese). [6] YI H Y, QI Y, YI X Y, et al. Development of GA-ASI's high energy laser[J]. Laser Technology, 2017, 41(2):213-220(in Chinese). [7] HU X Ch, PENG J Q, ZHANG B. Thermal distortion of deformable mirror and its influence on beam quality[J]. Chinese Journal of Lasers, 2015, 42(1):0102003(in Chinese). [8] FENG F, WEI B B, LIU W G, et al. Experimental study of impact of high power laser irradiation on compensation ability of deformable mirrors[J].Laser & Optoelectronics Progress, 2016, 53(12):120101(in Chinese). [9] PENG J Q, HU X Ch, CHEN L X, et al. Effect of structural parameters of deformable mirrors on phase characteristics of high-power laser[J]. Acta Optica Sinica, 2015, 35(5):0514001(in Chinese). [10] ZHOU C M, CHENG Z H. Influence of thermal deformations of high power laser mirror on beam transfer characteristic[J]. High Power Laser and Particle Beams, 2003, 15(10):969-972(in Chinese). [11] CONG Q D, YUAN G F, ZHANG Ch, et al. Experimental study about laser etching fused silica based on barium compounds[J]. Laser Technology, 2018, 42(3):351-356(in Chinese). [12] SANTOS R, MIRANDA L C M. Theory of the photo thermal radiometry with solids[J]. Journal of Applied Physics, 1981, 52(6):4194-4198. doi: 10.1063/1.329234 [13] SUN F, CHENG Z H, ZHANG Y N et al. Thermal distortions in calcium fluoride, potassium chloride and fused silica windows at 1.315μm[J]. Chinese Journal of Lasers, 2004, 31(4):412-416(in Chinese). [14] TAKEUTI Y, ZAIMA S, NODA N. Thermal stresses problems in industry 1:On thermoelastic distortion in machine metals[J]. Journal of Thermal Stresses, 1978, 1(2):199-210. [15] YE S L. Instrument and parts of fine mechanics.Hangzhou:Zhejiang University Press, 1989:69-78(in Chinese).