-
沉积实验中所用的目标基片为厚度是1.1mm的无色透明普通硅酸盐载玻片,所用金属靶材为厚度是0.8mm的T2紫铜板。实验前,载玻片分别经无水乙醇、去离子水超声清洗10min后,晾干备用;T2紫铜板分别经无水乙醇、稀硫酸超声清洗10min,再用去离子水超声清洗3min后,80℃快速烘干备用。
-
实验中所用的激光器是深圳杰普特光电股份有限公司的M6+系列红外纳秒光纤激光器,激光输出波长为1064nm,聚焦光斑直径约为30μm,重复频率为1kHz~1000kHz可调, 脉宽为1ns~250ns可调,理论输出功率为0W~20W可调。实验装置如图 1所示。载玻片紧贴在铜靶材表面,激光束通过光学系统后,透过玻璃始终聚焦在铜靶材上表面,与靶材产生相互作用,所产生的等离子体转移沉积至载玻片背面。
红外纳秒光纤激光的加工参量通常包括激光重复频率F、输出功率P、扫描速率v、填充间距U。当v和U一定时,激光能量密度Q与F和P有关, Q由下式给出:
$ Q = P/\left( {FS} \right) $
(1) 式中, S为光斑面积。
通过初步实验发现,红外纳秒脉冲激光对铜材料的诱导等离子体沉积阈值能量密度(阈值Q)约为12.50J/cm2(即当Q低于该值时,铜的沉积不能发生),故实验中将保持较低的F=80kHz不变,以便获得较高的Q;而在此重复频率下,该红外纳秒激光器的Q最大值约为27.13J/cm2。因此,在研究Q对铜沉积的影响时,Q取值范围为12.50J/cm2~27.13J/cm2。此外,考虑到加工效率的要求,设定v=1500mm/s,U=15μm。
当F和P一定时,v和U分别影响的是激光光斑之间的横向搭接率Ox和纵向搭接率Oy[19]。光斑搭接率用来衡量激光扫描加工时,激光重复叠加作用区域的大小,其中Ox由下式计算[20]:
$ {O_x} = \left[ {1 - v/\left( {DF} \right)} \right] \times 100\% $
(2) 式中, D为有效沉积光斑直径, 与Q有关,Q越大,D也越大。同理,Oy由下式计算:
$ {O_y} = \left( {1 - U/D} \right) \times 100\% $
(3) 在研究光斑搭接率O对铜沉积过程的影响时,为提高沉积效率,Q=27.13J/cm2保持不变;此时,若O过大, 会使铜沉积失败;若O过小,会导致沉积层不连续。因此,O取值范围为-20%~50%。
采用Nikon EPIPHOT300型光学显微镜对玻璃背面和激光诱导等离子体所得铜沉积层的微观形貌进行初步观察,采用Nova NanoSEM 450型扫描电子显微镜对铜沉积层作进一步观察。采用Scotch 3M 610胶带定性测定所得铜图案的结合强度,测试时,使胶带牢牢贴合所制备的铜图案,反向180°拉扯胶带,看铜图案是否会脱落。
纳秒光纤激光诱导等离子体沉积铜的研究
Study on plasma deposition of copper induced by nanosecond fiber laser
-
摘要: 为了实现玻璃表面的金属化,运用激光诱导等离子体沉积技术,选用廉价易维护且波长为1064nm的红外纳秒光纤激光和T2铜靶材,在透明材料普通硅酸盐玻璃表面直接沉积出了金属铜,并对其进行了光学显微镜和扫描电镜表征。结果表明,在一定的激光能量密度范围内(沉积阈值能量密度12.50J/cm2~激光器所能达到的最大能量密度27.13J/cm2),随着激光能量密度的增加,沉积在玻璃表面的铜颗粒数量增加;而在激光能量密度一定(27.13J/cm2)的条件下,若保持激光光斑的横向和纵向搭接率一致,当光斑搭接率不小于50%时,由于玻璃对激光的强烈吸收,导致铜沉积失败;当光斑搭接率在-20%~50%变化时,沉积在玻璃表面的铜颗粒数量呈现先增加后减小的变化趋势。激光诱导等离子体沉积技术是一种可实现透明衬底材料表面金属化的便捷技术。
-
关键词:
- 激光技术 /
- 激光诱导等离子体沉积 /
- 纳秒光纤激光 /
- 铜沉积层 /
- 铜图案
Abstract: In order to achieve surface metallization on glass substrates, metallic copper was directly deposited on the surface of conventional transparent silicate glass by means of laser-induced plasma deposition technology with a T2 copper target and a cheap and easily-maintained 1064nm wavelength infrared nanosecond fiber laser.Micro-morphology of the copper deposition layer was observed by an optical microscope and a scanning electron microscope.The results show that, in the range of laser energy density from 12.50J/cm2(deposition threshold) to 27.13J/cm2(the maximal fluence of the laser), the deposition amount of copper particles on the glass surface increases with the increase of laser fluence.Under the condition of constant laser fluence (e.g., 27.13J/cm2) and the same horizontal and vertical spot overlaps, copper deposition process fails if the spot overlap percentage is equal to or large than 50% bcause of the strong absorption of laser by glass.And if the overlap percentage ranges from-20% to 50%, deposition amount of copper particles has a tendency of increase firstly and then decrease.Laser-induced plasma deposition technology is a facile process to realize surface metallization on transparent substrate material. -
-
[1] YANG Y.Study on the key technology of the pulse laser induced forward transfer[D].Guangzhou: Guangdong University of Technology, 2015: 1-3(in Chinese). [2] LI H H, HUANG Zh G, YANG Q T, et al. High-viscosity silver paste deposited by laser induced forward transfer[J].Laser & Infre-red, 2017, 47(8):943-947(in Chinese). [3] LUO F, LONG H, HU Sh L, et al. Preparation of metallic coating on surface of diamond particles by pulsed laser deposition[J].Chinese Journal of Lasers, 2004, 31(10):1203-1206(in Chinese). [4] PENG X.Laser-induced electroless copper deposition on modified plastic surface[D].Quanzhou: Huaqiao University, 2012: 5-9(in Chinese). [5] SERNA M I, YOO S H, MORENO S, et al. Large-area deposition of MoS2 by pulsed laser deposition with in situ thickness control[J].ACS Nano, 2016, 10(6):6054-6061. doi: 10.1021/acsnano.6b01636 [6] HANADA Y, SUGIOKA K, MIYAMOTO I, et al.Color marking of transparent materials by laser-induced plasma-assisted ablation (LIPAA)[J].Journal of Physics, 2007, 59(1):687-690. [7] NEUENSCHWANDER B, JAEGGI B, SCHMID M, et al. Surface structuring with ultra-short laser pulses:basics, limitations and needs for high through[J].Physics Procedia, 2014, 56(8):1047-1058. [8] LÜ M, LIU J G, WANG S H, et al. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating[J].Applied Surface Science, 2016, 366(5):227-232. [9] HOU T J, AI J, LIU J G, et al. Selective preparation of metal copper layer on silicate glass by laser surface modification[J].Laser Technology, 2018, 42(2):176-180(in Chinese). [10] LIU M, FU X, XU L, et al. Design of nanosecond pulse laser micromachining system based on PMAC[J].Proceedings of the SPIE, 2012, 8418:84180K. doi: 10.1117/12.973663 [11] YU J, HE Sh T, SONG H Y, et al. Metal nanostructured film gene-rated by femtosecond laser induced forward transfer[J].Chinese Journal of Lasers, 2017, 44(1):0102009(in Chinese). doi: 10.3788/CJL [12] CHEN D Sh.Interaction between polymer and laser (Ⅲ) manufacture of fine circuit on polyimide film by selective electroless plating using silver as seeding[D].Shanghai: Shanghai Jiao Tong University, 2006: 15-20(in Chinese). [13] CHENG Y, LU Y M, GUO Y L, et al. Development of function films prepared by pulsed laser deposition technology[J].Laser & Optoelectronics Progress, 2015, 52(12):120003(in Chinese). [14] CHEN J W.Study on direct writing conductive lines by laser induced forward transfer technology[D].Wuhan: Huazhong University of Science and Technology, 2011: 13-19(in Chinese). [15] LIU J G, CHEN C H, ZHENG J Sh, et al.CO2 laser-induced local deposition of silver from aqueous solution[J].Chinese Journal of Applied Chemistry, 2004, 21(7):713-716(in Chinese). [16] ZHANG J, SUGIOKA K, MIDORIKAWA K.Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser[J].Optics Letters, 1998, 23(18):1486-1488. doi: 10.1364/OL.23.001486 [17] HANADA Y, SUGIOKA K, MIYAMOTO I, et al. Double-pulse irradiation by laser-induced plasma-assisted ablation (LIPAA) and mechanisms study[J].Applied Surface Science, 2005, 248(1/4):276-280. [18] HOU T J.Selective preparation of conductive metal layer on glass by laser surface modification[D].Wuhan: Huazhong University of Science and Technology, 2016: 24-28(in Chinese). [19] TOOSI S F, MORADI S, KAMAL S, et al. Superhydrophobic laser ablated PTFE substrates[J].Applied Surface Science, 2015, 349(17):715-723. [20] CRIALES L E, OROZCO P F, MEDRANO A, et al. Effect of fluence and pulse overlapping on fabrication of microchannels in PMMA/PDMS via UV laser micromachining:modeling and experimentation[J].Materials & Manufacturing Processes, 2015, 30(7):890-901. [21] WU D J, HONG M H, HUANG S M, et al. Laser-induced diffusion for glass metallization[J].Proceedings of the SPIE, 2003, 5063:30-33. doi: 10.1117/12.540496