-
试验材料选用尺寸为100mm×50mm×10mm的5083-O铝镁系铝合金板。焊前将材料浸泡在饱和氢氧化钠溶液中去除表面氧化膜,然后用HF(质量分数为0.03)+HCl(质量分数为0.07)混合溶液进行中和,用水清洗风干后再用丙酮清洗。填充材料选用ER5087焊丝,焊丝直径为Ø1.2mm。试验材料和填充焊丝化学成分如表 1所示。
Table 1. Chemical composition (mass fraction w) of 5083 aluminum alloy and filler wire
material Si Fe Cu Mn Mg Cr Zr Zn Ti Al 5083 aluminum
alloy0.004 0.004 0.001 0.004~0.01 0.04~0.049 0.0005~0.0025 — 0.0025 0.0015 balance ER5087 0.00022 0.0015 0.00005 0.009 0.048 — 0.00082 — — balance -
焊接设备采用德国Trumph公司生产的HL4006D型Nd: YAG激光器、松下Panasonic YD-350AG2HGE型MIG/MAG焊机与KUKA机器人组成的旁轴复合焊接系统,如图 1所示。YAG激光波长λ=1064nm,光束质量因子为25mm·mrad,焊枪与激光焊接头间夹角为30°。图 2为焊接过程示意图。实验过程的具体工艺参量如表 2所示。
Table 2. Process parameters of laser-MAG hybrid welding
processing parameters value laser power 2kW~4kW arc current 160A~240A arc voltage 20.2V~21.6V defocusing distance -2mm heat source distance 1mm~6mm shielding gas flow rate 30L·min-1 MIG shielding gas flow rate 15L·min-1 以上保护气体均为质量分数为0.9999的Ar。腐蚀测试设备为CHI760D三电极系电化学工作站。工作电极为待腐蚀样件,对电极为铂电极,参比电极为饱和甘汞,如图 3a所示。样品的有效腐蚀面积为0.1cm2,为保证试验准确性,测试样品的非腐蚀区域用环氧树脂涂层与腐蚀介质绝缘,如图 3b所示。腐蚀环境为NaCl溶液(质量分数为0.035),测试温度为25°,电压测试范围为-1.3V~0.2V,扫描速率为5mV/s。图 4为电化学反应原理示意图。
工艺参量对铝合金复合焊接接头耐蚀性的影响
Effect of process parameters on corrosion resistance of aluminum alloy hybrid welded joints
-
摘要: 为了保证船舰在海水环境中拥有足够的焊接强度和耐久性,选用船用铝合金(5083-O)进行焊接试验,模拟焊接接头在海水中的耐腐蚀性能。采用高适应性的激光-熔化极惰性气体保护焊复合焊接系统,分别分析研究了激光功率、焊接电流、光丝距对铝合金焊接接头耐腐蚀性能的影响;利用型号为CHI760D三电极化学工作站对不同焊接工艺参量下的铝合金焊接接头进行了腐蚀测试。结果表明,自腐蚀电流密度随激光功率的增加呈先增大后减小再增大的趋势,随焊接电流和光丝距的增加均呈"V"形规律变化,即先减小后增大的趋势;当激光功率为3.0kW、焊接电流为200A、光丝距为3mm时,接头组织以等轴晶为主,且气孔等缺陷较少,此时接头微观闭塞原电池效应微弱,自腐蚀电流密度最小,接头耐腐蚀性能相对较好。该研究对深入理解铝合金焊接过程中缺陷形成机理及提高接头耐腐蚀性能是有帮助的。Abstract: In order to ensure the enough welding strength and durability of the ship in seawater environment, 5083-O aluminum alloy was used to simulate the corrosion resistance of welded joints in seawater.The effects of laser power, welding current and wire spacing on the corrosion resistance of aluminum alloy welded joints were studied by using the highly adaptable laser-melting inert gas (MIG) shielded welding hybrid welding system.The results show that, the self-corrosion current density increases first, then decreases and then increases with the increase of laser power, and varies in the V-shape with the increase of welding current and wire spacing, that is, it decreases first and then increases.When laser power is 3.0kW, welding current is 200A and wire spacing is 3mm, the microstructures of the joint are mainly equiaxed grains, and the defects such as pores are few.At the same time, the micro-blocking galvanic cell effect of the joint is weak, the self-corrosion current density is minimum, and the corrosion resistance of the joint is relatively good.This study is helpful to understand the defect formation mechanism and improve the corrosion resistance of aluminum alloy welded joints.
-
Key words:
- laser technique /
- corrosion resistance /
- process parameter /
- aluminum alloy
-
Table 1. Chemical composition (mass fraction w) of 5083 aluminum alloy and filler wire
material Si Fe Cu Mn Mg Cr Zr Zn Ti Al 5083 aluminum
alloy0.004 0.004 0.001 0.004~0.01 0.04~0.049 0.0005~0.0025 — 0.0025 0.0015 balance ER5087 0.00022 0.0015 0.00005 0.009 0.048 — 0.00082 — — balance Table 2. Process parameters of laser-MAG hybrid welding
processing parameters value laser power 2kW~4kW arc current 160A~240A arc voltage 20.2V~21.6V defocusing distance -2mm heat source distance 1mm~6mm shielding gas flow rate 30L·min-1 MIG shielding gas flow rate 15L·min-1 -
[1] ZHOU D W, LIU J S, LU Y Z, et al. Effect of adding powder on joint properties of laser penetration welding for dual phase steel and aluminum alloy[J].Optics & Laser Technology, 2017, 94:171-179. [2] DING J K, WANG D P, WANG Y, et al. Effect of post weld heat treatment on properties of variable polarity TIG welded AA2219 aluminum alloy joints[J].Transactions of Nonferrous Metals Society of China, 2014, 24(5):1307-1316. doi: 10.1016/S1003-6326(14)63193-9 [3] HAN B, TAO W, CHEN Y, et al. Double-sided laser beam welded T-joints for aluminum-lithium alloy aircraft fuselage panels:Effects of filler elements on microstructure and mechanical properties[J].Optics & Laser Technology, 2017, 93:99-108. [4] MA S, ZHAO Y, ZOU J, et al. The effect of laser surface melting on microstructure and corrosion behavior of friction stir welded aluminum alloy 2219[J].Optics & Laser Technology, 2017, 96:299-306. [5] HE Y, TANG X, ZHU C, et al. Study on insufficient fusion of NG-GMAW for 5083 Al alloy[J].The International Journal of Advanced Manufacturing Technology, 2017, 92(9/12):4303-4313. [6] XU Ch Y, LIU Sh Y, ZHANG H, et al. Droplet transition characteristics and force analysis of laser-arc hybrid welding process[J].Journal of Mechanical Engineering, 2018, 54(6):1-8(in Chinese). doi: 10.3901/JME.2018.06.001 [7] SONG X H, JIN X Zh, CHEN Sh Q, et al. Progress of laser-arc hybrid welding and its applications in automotive body manufacture[J].Laser Technology, 2015, 39(2):259-265(in Chinese). [8] GAO M, ZENG X Y, YAN J, et al. Heat-source interaction of laser-arc hybrid welding[J].Laser Technology, 2007, 31(5):465-468(in Chinese). [9] AN J F, WU Zh L, FAN D, et al. Research progress in corrosion behavior and protection methods of aluminum alloy welded joints[J].Material Protection, 2015, 48(9):25-30(in Chinese). [10] KIM W J, WANG J Y, CHOI S O. Synthesis of ultra high strength Al-Mg-Si alloy sheets by differential speed rolling[J].Materials Science and Engineering, 2009, 520(1/2):23-28. [11] RAJAN T P D, PILLAI R M, PAI B C. Fabrication and characterization of Al-7Si-0.35Mg/fly ash metal matrix composites processed by different stir casting routes[J].Composites Science and Technology, 2007, 67(15/16):33-69. [12] TAN L, ALLEN T R. Effect of thermomechanical treatment on the corrosion of AA5083[J].Corrosion Science, 2010, 52(2):548-554. doi: 10.1016/j.corsci.2009.10.013 [13] LI H X. Study on corrosion resistance of aluminum alloy composite welded joints by welding process[D].Changchun: Changchun University of Science and Technology, 2017: 17-32(in Chinese). [14] CHEN J K, SHI Y, NI C, et al. Effect of line energy on laser welding quality of austenitic stainless steel[J].Laser Technology, 2015, 39(6):850-853(in Chinese). [15] WEN Y, WANG S, LI X H. 304# Stainless steel rotating bifocal laser-TIG welding microstructure[J].Laser Technology, 2009, 33(6):593-596(in Chinese). [16] CHEN Y B, CHEN J, LI L Q, et al. Arc shape and weld characteristics during laser-arc interaction[J].Welding Journal, 2003, 24(1):55-56(in Chinese).