Effect of laser parameters on slit morphology and roughness of vascular stents
-
摘要: 为了研究激光加工工艺参量对血管支架切缝形貌以及表面粗糙度的影响,采用不同参量对比分析试验法,开展了心血管支架316L材料光纤激光切割实验,分析了激光脉冲宽度、激光功率和切割速率等不同工艺参量对材料切缝形貌及粗糙度的影响,得出激光切割支架的最佳工艺参量组合。结果表明,不同区域切缝形貌和表面粗糙度存在差异性,其中支架切缝的汽化区厚度主要受脉冲宽度及激光功率影响,当脉冲宽度为35μs时,支架切缝汽化区厚度最大可达到120μm;支架切缝汽化区粗糙度随切割速率增加先减小后增大,当切割速率为6mm/s时,切缝表面粗糙度值最低为650nm。此研究结果为心血管支架光纤加工的研究及后续光整加工奠定了理论基础。Abstract: In order to study the effect of laser processing parameters on the slit morphology and surface roughness of vascular stent, the experiment of optical fiber laser cutting of cardiovascular stent 316L was carried out by means of comparative analysis of different parameters. The effects of different process parameters such as laser pulse width, laser power, and cutting speed on the slit morphology and roughness of the material were analyzed, and the optimum combination of process parameters for laser cutting support was obtained. The results show that there are differences in slit morphology and surface roughness in different regions, in which the thickness of the vaporization zone is mainly affected by the pulse width and laser power. When the pulse width is 35μs, the maximum thickness of the slit vaporization zone can reach 120μm. In addition, the roughness of the slit vaporization zone of the support decreases at first and then increases with the increase of the cutting speed. When the cutting speed is 6mm/s, the lowest value of slit surface roughness is 650nm. The results lay a theoretical foundation for the research and subsequent finishing of cardiovascular stent optical fiber.
-
Keywords:
- laser technique /
- cardiovascular stent /
- process parameters /
- slit morphology /
- roughness
-
-
Table 1 The range of laser process parameters
process parameters laser power/W pulse width/μs pulse frequency/Hz cutting speed/
(mm·s-1)adjustable range 0~200 1~100 1~10000 0~10 actual range 100~150 10~35 7000~10000 3~8 -
[1] MA J L, YU Zh H, ZHU M, et al. Review on the property of NiTi vascular stent[J]. Metallic Functional Materials, 2015, 22(2): 56-59(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsgncl201502013
[2] LIU L, LI D B, TONG Y F, et al. Laser processing technology and its research progress of vascular stent[J]. Hot Working Technology, 2017, 46(5): 15-18(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rjggy201705004
[3] LU L B, WANG H P, GUAN Y Ch, et al. Laser microfabrication of biomedical devices[J]. Chinese Journal of Lasers, 2017, 44(1): 0102005(in Chinese). DOI: 10.3788/CJL201744.0102005
[4] ZHANG J Y, ZHANG H Y, LI Zh Y, et al. Effect of laser parameters on recasting layer and heat affected zone of cardiovascular stents[J]. Laser Technology, 2019, 43(4): 460-463(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201904005
[5] GUAN B G, MENG H Y, LIAO J H, et al. Fabrication and influence factors of mental cardiovascular stent[J]. Acta Laser Biology Sinica, 2011, 20(2): 274-279 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgswxb201102024
[6] ZHANG Ch, WANG G, YANG Zh G, et al. Optimization of techno-logy parameters for fracture splitting grooves of connecting rods fabricated by pulse fiber laser[J]. Laser Technology, 2018, 42(3):422-426 (in Chinese).
[7] SUN J F, ZHANG Q M, YANG Zh, et al. Research on optimization of fiber laser cutting technology of 316L stainless steel[J]. Applied Laser, 2016, 36(1): 72-77(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyjg201601014
[8] YAO L, WU N, HAN X J, et al. Fiber laser cutting and its application prospects in precision machining[J]. Hot Working Technology, 2018, 47(7): 11-15(in Chinese).
[9] LI T Q, MAO X J, LEI J, et al. Analysis and comparison of solid-state lasers and fiber lasers on the coupling of rod-type photonic crystal fiber[J]. Chinese Optics, 2018, 11(6): 958-973(in Chinese). DOI: 10.3788/co.20181106.0958
[10] PFEIFER R, HERZOG D, HUSTEDT M, et al.Pulsed Nd:YAG laser cutting of NiTi shape memory alloys-influence of process parameters[J]. Journal of Materials Processing Technology, 2010, 210(14): 1918-1925. DOI: 10.1016/j.jmatprotec.2010.07.004
[11] ZHANG X B. Laser drilling with 100ns~700ns YAG laser in Nickel-based alloy[J]. Applied Laser, 2005, 25(2):90-92 (in Chin-ese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyjg200502006
[12] MENG H Y, LIAO J H, GUAN B G, et al. Fiber laser cutting technology on coronary artery stent[J]. Chinese Journal of Lasers, 2007, 34(5): 733-736(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg200705026
[13] LI Q, SUN G F, LU Z, et al. Experimental research on fiber laser underwater cutting of 1mm thick 304 stainless steel[J]. Chinese Journal of Lasers, 2016, 43(6):0602001(in Chinese). DOI: 10.3788/CJL201643.0602001
[14] MEIJER J, DU K, GILLNER A, et al. Laser machining by short and ultrashort pulses state of the art and new opportunities in the age of the photons[J]. CIRP Annals Manufacturing Technology, 2002, 51(2): 531-550. DOI: 10.1016/S0007-8506(07)61699-0
[15] MA Zh J, REN C, YAN B, et al. Preparation and creation of the composite of 316L stainless steel and CaSiO3 for bone repairing implantation[J]. Nonferrous Metal Materials and Engineering, 2018, 39(1):31-37(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/shysjs201801006
[16] LI W B. Research on femtosecond laser purse polishing of silicon carbide ceramic material[D]. Harbin: Harbin Institute of Technology, 2011: 15-45(in Chinese).
[17] ZHANG T Z. Study on the mechanism of melt ejection, recast layer and micro crack formation in millisecond laser drilling[D]. Nanjing: Nanjing University of Science & Technology, 2017: 17-47(in Chinese).
[18] TAN Ch, SUN X Y, YIN K, et al. Surface roughness of cutting metal by femtosecond laser[J]. Journal of Central South University (Science and Technology Edition), 2015, 46(12): 4481-4487 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZNGD201512014.htm
[19] LI Zh, WANG T, LIU J, et al. Effect of process parameters on co-rrosion resistance of aluminum alloy hybrid welded joints[J]. Laser Technology, 2019, 43(2): 189-194 (in Chinese). https://www.zhangqiaokeyan.com/academic-journal-cn_laser-technology_thesis/0201270971155.html
[20] MANLEY J, HOUSH R, WAGNER F, et al. Water-guided lasers create clean cuts[J]. Laser Focus World, 2004, 40(5):15-18. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027065868/